Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n4 + 4 = (n2)2 + 4.n2 + 4 - 4.n2 = (n2 + 2)2 - (2n)2 = (n2 + 2 - 2n) . (n2 +2 + 2n) = [(n -1)2 + 1] . [(n + 1)2 +1]
Vì n là số tự nhiên nên xét các trường hợp
-Nếu n = 0 thì n4 + 4 = [(0 - 1)2 + 1] . [(0 + 1)2 + 1] = 2 . 2 = 22 là hợp số, loại
-Nếu n = 1 thì n4 + 4 = [(1 - 1)2 + 1] . [(1 + 1)2 +1] = 1 . 5 = 5 là số nguyên tố, chọn
-Nếu n > 1 thì n4 + 4 là tích của hai số lớn hơn 1 là [(n -1)2 + 1] và [(n + 1)2 +1] . Tích của hai số lớn hơn 1 luôn là hợp số, loại
Vậy n = 1 để n4 + 4 là số nguyên tố.
n4 + 4 = (n2)2 + 4.n2 + 4 - 4.n2 = (n2 + 2)2 - (2n)2 = (n2 + 2 - 2n) . (n2 +2 + 2n) = [(n -1)2 + 1] . [(n + 1)2 +1]
Vì n là số tự nhiên nên xét các trường hợp
-Nếu n = 0 thì n4 + 4 = [(0 - 1)2 + 1] . [(0 + 1)2 + 1] = 2 . 2 = 22 là hợp số, loại
-Nếu n = 1 thì n4 + 4 = [(1 - 1)2 + 1] . [(1 + 1)2 +1] = 1 . 5 = 5 là số nguyên tố, chọn
-Nếu n > 1 thì n4 + 4 là tích của hai số lớn hơn 1 là [(n -1)2 + 1] và [(n + 1)2 +1] . Tích của hai số lớn hơn 1 luôn là hợp số, loại
Vậy n = 1 để n4 + 4 là số nguyên tố.
Hiện câu 1 mih chưa giải đc
Đây là đ.a câu 2
\(\frac{4c}{4c+57}\ge\frac{1}{a+1}+\frac{35}{35+2b}\ge2\sqrt{\frac{35}{\left(a+1\right)\left(35+2b\right)}}\)(Cosi) (1)
Từ đề bài \(\Leftrightarrow\frac{1}{a+1}+\frac{35}{35+2b}\le1-\frac{57}{4c+57}\Leftrightarrow\frac{1}{a+1}+\frac{35}{35+2b}+\frac{57}{4c+57}\le1\) (*)
Từ (*) \(\Rightarrow1-\frac{1}{a+1}=\frac{a}{a+1}\ge\frac{35}{35+2b}+\frac{57}{4c+57}\ge2\sqrt{\frac{35.57}{\left(35+2b\right)\left(4c+57\right)}}\)(2)
Từ (*) \(\Rightarrow1-\frac{35}{35+2b}=\frac{2b}{35+2b}\ge\frac{1}{a+1}+\frac{35}{35+2b}\ge2\sqrt{\frac{35}{\left(a+1\right)\left(35+2b\right)}}\)(3)
Nhân vế với vế của (1);(2);(3) lại ta được :
\(\frac{4c.a.2b}{\left(4c+57\right)\left(a+1\right)\left(35+2b\right)}\ge8\sqrt{\frac{57.35.35.57}{\left(4c+57\right)^2\left(a+1\right)^2\left(35+2b\right)^2}}\)
\(\Leftrightarrow abc\ge35.57=1995\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\frac{1}{a+1}=\frac{35}{35+2b}=\frac{57}{4c+57}\\abc=1995\end{cases}}\Leftrightarrow\hept{\begin{cases}a=\frac{2b}{35}=\frac{4c}{57}\\abc=1995\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a=2\\b=35\\c=\frac{57}{2}\end{cases}}\) Vậy \(MinA=1995\) tại \(a=2;b=35;c=\frac{57}{2}\)
Ta có: \(\hept{\begin{cases}4k\equiv-1\left(modp\right)\\4k-1\equiv-2\left(modp\right)\end{cases}}\)
\(\Rightarrow\left(4k\right)!\equiv\left[\left(2k\right)!\right]^2\left(modp\right)\)
Theo định lý Wilson kết hợp với định lý Fecma nhỏ ta có:
Với \(n=4k\left(2k\right)!\) thì:
\(2^n-1\left[2^{\left(2k\right)!}\right]^{4k}-1\equiv0\left(modp\right)\)
\(\Rightarrow n^2+2^n=\left[4k.\left(2k\right)!\right]^2+2^{4k\left(2k\right)!}\equiv0\left(modp\right)\)
\(\Rightarrow\) Có vô số giá trị của \(n\) thỏa mãn.
cmr với mọi n thuộc N; n>1 thỏa mãn \(n^2+4\) và \(n^2+16\) là các số nguyên tố thì n chia hết cho 5
+, Nếu n chia 5 dư +-1 thì :
n^2 chia 5 dư 1 => n^2+4 chia hết cho 5
Mà n^2+4 > 5 => n^2+4 là hợp số
+, Nếu n chia 5 dư +-3 thì :
n^2 chia 5 dư 4 => n^2+16 chia hết cho 5
Mà n^2+16 > 5 => n^2+16 lừ hợp số
=> để n^2+4 và n^2+16 đều là số nguyên tố thì n chia hết cho 5
Tk mk nha
1.
Ta có: \(\frac{1}{x}+\frac{1}{y}=\frac{1}{pq}\)
<=> \(pq\left(x+y\right)=xy\)
Đặt: \(x=ta;y=tb\) với (a; b)=1
Ta có: \(pq.\left(a+b\right)=tab\)
<=> \(pq=\frac{t}{a+b}.ab\left(1\right)\)
vì (a; b) =1 => a, b, a+b đôi một nguyên tố cùng nhau. (2)
(1); (2) => \(t⋮a+b\)
=> \(pq⋮ab\Rightarrow pq⋮a\)vì p; q là hai số nguyên tố nên \(a\in\left\{1;p;q;pq\right\}\)
TH1: a=1 => \(pq⋮b\Rightarrow b\in\left\{1;p;q;pq\right\}\)
+) Khả năng 1: b=1
(1) => \(t=2pq\)=> \(x=y=2pq\)( thỏa mãn)
+) Khả năng 2: b=p
(1) => \(pq=\frac{t}{1+p}.p\Leftrightarrow t=\left(1+p\right)q=q+pq\)
=> \(x=at=q+pq;\)
\(y=at=pq+p^2q\)(tm)
+) Khả năng 3: b=q
tương tự như trên
(1) => \(t=p\left(1+q\right)=p+pq\)
=> \(x=at=p+pq\)
\(y=bt=q\left(p+pq\right)=pq+pq^2\)
+) Khả năng 4: \(b=pq\)
(1) =>\(t=1+pq\)
=> \(x=1+pq;y=pq\left(1+pq\right)=1+p^2q^2\)
TH2: \(a=p\)
=> \(q⋮b\Rightarrow\orbr{\begin{cases}b=1\\b=q\end{cases}}\)
+) KN1: \(b=1\)
Em làm tiếp nhé! Khá là dài
2. \(x^4+4=p.y^4\)
+) Với x chẵn
Đặt x=2m ( m thuộc Z)
=> \(16m^2+4=py^4\)
=> \(py^4⋮4\Rightarrow y^4⋮4\Rightarrow y^2⋮2\Rightarrow y⋮2\)=> Đặt y=2n ;n thuộc Z
Khi đó ta có:
\(16m^2+4=p.16n^2\Leftrightarrow4m^2+1=p.4n^2⋮4\)=> \(1⋮4\)( vô lí)
=> X chẵn loại
+) Với x lẻ
pt <=> \(x^4+4=py^4\)
<=> \(\left(x^2+2x+2\right)\left(x^2-2x+2\right)=py^4\)(i)
Gọi \(\left(x^2+2x+2;x^2-2x+2\right)=d\)(1)
=> \(x^2+2x+2⋮d\)
\(x^2-2x+2⋮d\)
=.> \(\left(x^2+2x+2\right)-\left(x^2-2x+2\right)=4x⋮d\)
Vì x lẻ => d lẻ
=> \(x⋮d\)
=> \(2⋮d\Rightarrow d=1\)
Do đó: \(\left(2x^2+2x+2;2x^2-2x+2\right)=1\)(ii)
Từ (i) và (ii) có thể đặt: với \(ab=y^2\)sao cho:
\(x^2+2x+2=pa^2;\)
\(x^2-2x+2=b^2\)<=> \(\left(x-1\right)^2+1=b^2\)\(\Leftrightarrow\left(x-1-b\right)\left(x-1+b\right)=-1\)
<=> x=b=1 hoặc x=1; b=-1
Với x=1 => a^2.p=5 => p=5
Ta có:\(m^4+4=m^4+4m^2+4-4m^2=\left(m^2+2\right)^2-4m^2=\left(m^2-2m+2\right)\left(m^2+2m+2\right)\)
Để \(m^4+4\) là số nguyên tố thì ta có 2 trường hợp xảy ra:
TH1:\(\hept{\begin{cases}m^2-2m+2=1\\m^2+2m+2=m^4+4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}m\left(m-2\right)=-1\\m\left(-m^3+m+2\right)=2\end{cases}}\).Từ hai pt trên ta có thể suy ra:m=1 thỏa mãn
TH2:\(\hept{\begin{cases}m^2-2m+2=m^4+4\\m^2+2m+2=1\end{cases}}\)\(\Rightarrow\hept{\begin{cases}m\left(m-2-m^3\right)=2\\m\left(m+2\right)=-1\end{cases}}\).Tương tự TH1 ta cũng có:m=-1 thỏa mãn
Thay vào \(A=m^4+m^2+1\) ta thấy x=1 và x=-1 đều thỏa mãn
Vậy x\(\in\left\{-1,1\right\}\) thỏa mãn bài toán
Cho mình thêm đoạn cuối với,mình đọc thiếu đề.Bạn thêm cho mình:
Vì \(m\in N\) nên \(m=1\) thỏa mãn
Vậy chỉ có m=1 thỏa mãn bài toán
\(=n^4+4n^2+4-4n^2\)
=\(\left(n^2+2\right)^2-\left(2n\right)^2\)
=(n^2-2n+2)(n^2+2n+2)
nên n^4+4 là số nguyên tố khi n^2-2n+2=1 => n\(\in\){1,-1} (t/m)
\(n^4+4=\left(n^4+4n^2+4\right)-4n^2=\left(n^2+2\right)^2-\left(2n\right)^2=\left(n^2+2-2n\right)\left(n^2+2+2n\right)\)
Ta có: \(n^2+2n+2=n^2+2n+1+1=\left(n+1\right)^2+1>1\) với mọi \(n\in N\)
\(n^2+2-2n=n^2-2n+1+1=\left(n-1\right)^2+1\ge1\) với mọi \(n\in N\)
Để n4+4 là số nguyên tố thì n4+4 chỉ có 2 ước là chính nó và 1
\(\Rightarrow\hept{\begin{cases}n^2+2n+2=n^4+4\\n^2-2n+2=\left(n-1\right)^2+1=1\left(1\right)\end{cases}}\)
Từ (1) => (n-1)2=0 => n-1=0 => n=1
Vậy n=1 thì n4+4 là số nguyên tố