K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2015

Nguyễn Trung Hiếu sai là bằng nhau mới đúng

10 tháng 8 2017

Do phần B đc tính theo lũy thừa nên

\(A< B\)

Vậy....

19 tháng 9 2018

      \(\frac{1981^2-1980^2}{1981^2+1980^2}\)

\(=\frac{\left(1981-1980\right)\left(1981+1980\right)}{1981^2+1980^2}\)

\(>\frac{\left(1981-1980\right)\left(1981+1980\right)}{1981^2+2.1981.1980+1980^2}\)

\(=\frac{\left(1981-1980\right)\left(1981+1980\right)}{\left(1981+1980\right)^2}=\frac{1981-1980}{\left(1981+1980\right)}\)

31 tháng 5 2015

mình cũng không chắc câu này

10 tháng 6 2018

(1981 x 1982 - 990) : (1980 x 1982 + 992)

=(1980 x 1982+1982 -990) : (1980 x 1982 +992)

=(1980 x 1982 + 992) : ( 1980 x 1982 + 992)

=1

10 tháng 6 2018

(1981 x 1982 - 990) : (1980 x 1982 + 992)

=(1980 x 1982+1982 -990) : (1980 x 1982 +992)

=(1980 x 1982 + 992) : ( 1980 x 1982 + 992)

=1

20 tháng 11 2017

+) \(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=0\)

\(\Rightarrow\dfrac{ayz}{xyz}+\dfrac{bxz}{xyz}+\dfrac{cxy}{xyz}=0\)

\(\Rightarrow\dfrac{ayz+bxz+cxy}{xyz}=0\)

\(\Rightarrow ayz+bxz+cxy=0\)

+) \(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=1\)

\(\Rightarrow\left(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}\right)^2=1\)

\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\dfrac{xy}{ab}+2\dfrac{xz}{ac}+2\dfrac{yz}{bc}=1\)

\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{xy}{ab}+\dfrac{xz}{ac}+\dfrac{yz}{bc}\right)=1\)

\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{cxy}{abc}+\dfrac{bxz}{abc}+\dfrac{ayz}{abc}\right)=1\)

\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{ayz+bxz+cxy}{abc}\right)=1\)

\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{0}{abc}\right)=1\)

\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+0=1\) \(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}=1\left(đpcm\right)\)
5 tháng 7 2018

\(\dfrac{x-5}{1990}+\dfrac{x-15}{1980}=\dfrac{x-1980}{15}+\dfrac{x-1990}{5}\)

\(\Leftrightarrow(\dfrac{x-5}{1990}-1)+(\dfrac{x-15}{1980}-1)=(\dfrac{x-1980}{15}-1)+(\dfrac{x-1990}{5}-1)\)

\(\Leftrightarrow\dfrac{x-1995}{1990}+\dfrac{x-1995}{1980}-\dfrac{x-1995}{15}-\dfrac{x-1995}{5}=0\)

\(\Leftrightarrow\left(x-1995\right)\left(\dfrac{1}{1990}+\dfrac{1}{1980}-\dfrac{1}{15}-\dfrac{1}{5}\right)=0\)

\(\Leftrightarrow x-1995=0\)

\(\Leftrightarrow x=1995\)

5 tháng 7 2018
\(Giải\): \(\dfrac{x-5}{1990}\)+\(\dfrac{x-15}{1990}\)=\(\dfrac{x-1980}{15}\)+\(\dfrac{x-1990}{5}\) ⇔(\(\dfrac{x-5}{1990}\)- 1) + (\(\dfrac{x-15}{1980}\)- 1) = (\(\dfrac{x-1980}{15}\)-1) +\(\dfrac{x-1990}{5}\) - 1) ⇔ \(\dfrac{x-1995}{1990}\)+\(\dfrac{x-1995}{1980}\)-\(\dfrac{x-1995}{15}\)-\(\dfrac{x-1995}{5}\)= 0 ⇔ (\(x-1995\)) (\(\dfrac{1}{1990}\)+\(\dfrac{1}{1980}\)-\(\dfrac{1}{15}\)-\(\dfrac{1}{5}\)) = 0 ⇔\(x-1995=0\)\(x=1995\)
27 tháng 2 2017

Theo bất đẳng thức tam giác

\(\Rightarrow\left\{\begin{matrix}a< b+c\\b< c+a\\c< a+b\end{matrix}\right.\Rightarrow\left\{\begin{matrix}b+c-a>0\\c+a-b>0\\a+b-c>0\end{matrix}\right.\)

Áp dụng bất đẳng thức \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\forall a,b>0\)

\(\Rightarrow\left\{\begin{matrix}\dfrac{1}{a+b-c}+\dfrac{1}{b+c-a}\ge\dfrac{2}{b}\\\dfrac{1}{b+c-a}+\dfrac{1}{a+c-b}\ge\dfrac{2}{c}\\\dfrac{1}{a+b-c}+\dfrac{1}{a+c-b}\ge\dfrac{2}{a}\end{matrix}\right.\)

Cộng theo từng vế

\(\Rightarrow2\left(\dfrac{1}{a+b-c}+\dfrac{1}{b+c-a}+\dfrac{1}{a+c-b}\right)\ge2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

\(\Rightarrow\dfrac{1}{a+b-c}+\dfrac{1}{b+c-a}+\dfrac{1}{a+c-b}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\) ( đpcm )

27 tháng 2 2017

câu 1: a+b>?