Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1981^2-1980^2}{1981^2+1980^2}\)
\(=\frac{\left(1981-1980\right)\left(1981+1980\right)}{1981^2+1980^2}\)
\(>\frac{\left(1981-1980\right)\left(1981+1980\right)}{1981^2+2.1981.1980+1980^2}\)
\(=\frac{\left(1981-1980\right)\left(1981+1980\right)}{\left(1981+1980\right)^2}=\frac{1981-1980}{\left(1981+1980\right)}\)
(1981 x 1982 - 990) : (1980 x 1982 + 992)
=(1980 x 1982+1982 -990) : (1980 x 1982 +992)
=(1980 x 1982 + 992) : ( 1980 x 1982 + 992)
=1
(1981 x 1982 - 990) : (1980 x 1982 + 992)
=(1980 x 1982+1982 -990) : (1980 x 1982 +992)
=(1980 x 1982 + 992) : ( 1980 x 1982 + 992)
=1
cái này lớp 12 thì giải oke, còn lp 8 thì ko có a thoả mãn GT
Cho thêm cái \(a^2+b^2+c^2=1\) là ez rồi
\(a+b+c=1\Leftrightarrow\left[\left(a+b\right)+c\right]^3=1\)
\(\Leftrightarrow\left(a+b\right)^3+3\left(a+b\right)^2c+3\left(a+b\right)c^2+c^3=1\)
\(\Leftrightarrow a^3+3a^2b+3ab^2+b^3+3\left(a^2+2ab+b^2\right)c+3ac^2+3bc^2+c^3=1\)
\(\Leftrightarrow\left(a^3+b^3+c^3\right)+3\left(a^2b+ab^2+a^2c+2abc+b^2c+ac^2+bc^2\right)=1\)
\(\Leftrightarrow a^2b+ab^2+a^2c+abc+abc+b^2c+ac^2+bc^2=0\)
\(\Leftrightarrow ab\left(a+b\right)+ac\left(a+b\right)+bc\left(a+b\right)+c^2\left(a+b\right)=0\)
\(\Leftrightarrow\left(ab+ac+bc+c^2\right)\left(a+b\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=-b\\b=-c\\c=-a\end{matrix}\right.\)
Xét \(a=-b\). Ta có theo đề bài \(a+b+c=1\Leftrightarrow c=1\)
\(a=-b\Leftrightarrow a^{1981}=-b^{1981}\)
\(S=a^{1981}+b^{1981}+c^{1981}=c^{1981}=1^{1981}=1\)
pt <=> (x-5/1990 - 1) + (x-15/1980 - 1) = (x-1980/15 - 1) + (x-1990/5 - 1)
<=> x-1995/1990 + x-1995/1980 = x-1995/15 + x-1995/5
<=> x-1995/15 + x-1995/5 - x-1995/1990 - x-1995/1980 = 0
<=> (x-1995).(1/5+1/15-1/1990-1/1980) = 0
<=> x-1995 = 0 ( vì 1/5 + 1/15 - 1/1990 - 1/1980 > 0 )
<=> x = 1995
Vậy S={1995}
Tk mk nha
Ta có :
\(\frac{x-5}{1990}+\frac{x-15}{1980}=\frac{x-1980}{15}+\frac{x-1990}{5}\)
\(\Leftrightarrow\)\(\left(\frac{x-5}{1990}-1\right)+\left(\frac{x-15}{1980}-1\right)=\left(\frac{x-1980}{15}-1\right)+\left(\frac{x-1990}{5}-1\right)\)
\(\Leftrightarrow\)\(\frac{x-1995}{1990}+\frac{x-1995}{1980}=\frac{x-1995}{15}+\frac{x-1995}{5}\)
\(\Leftrightarrow\)\(\frac{x-1995}{1990}+\frac{x-1995}{1980}-\frac{x-1995}{15}-\frac{x-1995}{5}=0\)
\(\Leftrightarrow\)\(\left(x-1995\right)\left(\frac{1}{1990}+\frac{1}{1980}+\frac{1}{15}+\frac{1}{5}\right)=0\)
Vì \(\frac{1}{1990}+\frac{1}{1980}+\frac{1}{15}+\frac{1}{5}\ne0\)
Nên \(x-1995=0\)
\(\Rightarrow\)\(x=1995\)
Vậy \(x=1995\)
Chúc bạn học tốt ~
1/Bạn cộng tất cả các phân số ở 2 vế với 1, tất cả các phân số sẽ có chung tử, cậu nhóm tử đó lại thành PT tích..với mẫu =0 tìm đc x
2/Trừ 1 vào từng phân thức đc
\(\frac{x-b-c}{a}-1+\frac{x-a-c}{b}-1+\frac{x-a-b}{c}-1=0\)
\(\Leftrightarrow\frac{x-\left(a+b+c\right)}{a}+\frac{x-\left(a+b+c\right)}{b}+\frac{x-\left(a+b+c\right)}{c}=0\)
\(\Leftrightarrow\left(x-\left(a+b+c\right)\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=0\)
\(\Rightarrow x=a+b+c\)
Do phần B đc tính theo lũy thừa nên
\(A< B\)
Vậy....