Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
yugi sắp có phim mới rùi hay lém
tên của nó hình như là yugioh: dark ò the gì gì đó
**** nha
1. 3x2 - 50x = 0 <=> x(3x - 50) = 0
=> x = 0 hoặc 3x - 50 = 0 hay x = 50/3
2. 23x + 2 = 4x + 5 <=> 23x + 2 = 22x + 10
=> 3x + 2 = 2x + 10 => x = 8
3. C = (x2 + 13)2 =( x4 + 26x2) + 169
Ta thấy: ( x4 + 26x2)\(\ge\)0 nên ( x4 + 26x2) + 169 \(\ge\) 0 + 169
dấu bằng xảy ra khi ( x4 + 26x2) = 0 => GTNN của C = 169
4. \(\frac{3}{x+1}\)có giá trị nguyên khi và chỉ khi 3 chia hết cho x + 1
hay x + 1 \(\in\)Ư(3)={ -1;2;-3;3}
x \(\in\){-2;1;-4;2}
Vậy số nguyên x nhỏ nhất là - 4 để \(\frac{3}{x+1}\) có giá trị nguyên
Ta có: \(\frac{x+1}{7}=0\Leftrightarrow x+1=0\)
\(\Leftrightarrow x=-1\)
Ta có: \(\frac{3x+3}{5}=0\)
\(\Leftrightarrow3x+3=0\)
\(\Leftrightarrow3x=-3\)
\(\Leftrightarrow x=-1\)
Ta có: \(\frac{2x\left(x+1\right)}{3x+4}=0\Leftrightarrow2x\left(x+1\right)=0\)
\(\Leftrightarrow x\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
Vậy x \(\in\left\{-1;0\right\}\) thì \(\frac{2x\left(x+1\right)}{3x+4}=0\)
Ta có: \(\frac{2x\left(x-5\right)}{x-7}=0\Leftrightarrow2x\left(x-5\right)=0\)
\(\Leftrightarrow x\left(x-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=5\end{cases}}\)
Vậy \(x\in\left\{0;5\right\}\) thì \(\frac{2x\left(x-5\right)}{x-7}=0\)
\(3x-2y+1=0\Rightarrow y=\frac{3x+1}{2}\)
Do y nguyên nên \(\frac{3x+1}{2}\in Z\Rightarrow x=2k+1\)
Khi đó \(P=\left|x\right|+\left|\frac{3x+1}{2}\right|\), ta tiến hành phá dấu trị tuyệt đối của P.
Với \(x\le-\frac{1}{3}\) do x nguyên nên ta có thể coi như \(x\le-1\)
Với \(x\le-1\Rightarrow P=-x-\frac{3x+1}{2}=-\frac{5x+1}{2}\ge2.\)
Khi đó minP = 2 khi x = -1, y = -1.
Với \(-\frac{1}{3}< x< 0\) không có giá trị x nguyên thỏa mãn.
Với \(x\ge0,\) do \(x=2k+1\Rightarrow\) ta có thể coi \(x\ge1\)
Với \(x\ge1\Rightarrow P=x+\frac{3x+1}{2}=\frac{5x+1}{2}\ge3\)
Vậy \(minP=3\) khi \(x=1\Rightarrow y=2\)
Tóm lại \(minP=2\) khi x = -1, y = -1.
Ta có: \(f\left(671.3+1\right)=\left(671-670\right)\left(671-672\right)\Rightarrow f\left(2014\right)=1.\left(-1\right)=-1\)
Ta có: \(3x+1=2014\)
\(\Rightarrow3x=2013\)\(\Rightarrow x=671\)
Thay \(x=671\)vào hàm số trên ta được:
\(\left(671-670\right).\left(671-672\right)=1.\left(-1\right)=-1\)
Vậy \(f\left(2014\right)=-1\)
Câu 1: Giá trị của x thỏa mãn
|x+2,37|+|y−5,3|=0
Để GTBT bằng 0 thì |x+2,37| = 0 và |y−5,3| = 0
-> x = -2,37 , y = 5,3
Vậy x = -2,37
Câu 2: Giá trị của y thỏa mãn
−|2x+\(\frac{4}{7}\)|−|y−1,37| = 0
-> |2x+\(\frac{4}{7}\) = 0 -> x = \(-\frac{2}{7}\)
-> |y−1,37| = 0 -> y = 1,37
Vậy y = 1,37
Ta có: \(f\left(4^3+1\right)=4^2-4.3\Rightarrow f\left(65\right)=4\)
Ta có: \(x^3+1=65\)
\(\Rightarrow x^3=64\)\(\Rightarrow x=4\)
Thay \(x=4\)vào hàm số ban đầu ta được
\(f\left(65\right)=4^2-3.4=16-12=4\)
Vậy \(f\left(65\right)=4\)