\(\left(3x-4\right)^5=\left(3x-4\right)^7\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2015

yugi sắp có phim mới rùi hay lém

tên của nó hình như là yugioh: dark ò the gì gì đó

**** nha

30 tháng 12 2015

x=3,có thể x=0;1 theo mình nghĩ lad thế

5 tháng 2 2016

1. 3x2 - 50x = 0 <=> x(3x - 50) = 0

=> x = 0 hoặc 3x - 50 = 0 hay x = 50/3

2. 23x + 2 = 4x + 5 <=> 23x + 2 = 22x + 10

=> 3x + 2 = 2x + 10 => x = 8

3. C = (x2 + 13)2 =( x4 + 26x2) + 169

Ta thấy: ( x4 + 26x2)\(\ge\)0 nên ( x4 + 26x2) + 169 \(\ge\) 0 + 169

dấu bằng xảy ra khi ( x4 + 26x2) = 0 => GTNN của C = 169

4. \(\frac{3}{x+1}\)có giá trị nguyên khi và chỉ khi 3 chia hết cho x + 1

hay x + 1 \(\in\)Ư(3)={ -1;2;-3;3}

\(\in\){-2;1;-4;2}

Vậy số nguyên x nhỏ nhất là - 4 để \(\frac{3}{x+1}\) có giá trị nguyên

Câu 1: Giá trị x=... thì biểu thức \(D=\frac{-1}{5}\left(\frac{1}{4}-2x\right)^2-\left|8x-1\right|+2016\) đạt giá trị lớn nhất. Câu 2: Tập hợp giá trị x nguyên thỏa mãn \(\left|2x-7\right|+\left|2x+1\right|\le8\)Câu 3: Giá trị lớn nhất của \(B=3-\sqrt{x^2-25}\)Câu 4: Số phần tử của tập hợp \(\left\{x\in Z\left|x-2\right|\le9\right\}\)Câu 5: Giá trị nhỏ nhất của biểu thức D= \(\frac{-3}{x^2+1}-2\)Câu 6: Có bao nhiêu...
Đọc tiếp

Câu 1: Giá trị x=... thì biểu thức \(D=\frac{-1}{5}\left(\frac{1}{4}-2x\right)^2-\left|8x-1\right|+2016\) đạt giá trị lớn nhất. 

Câu 2: Tập hợp giá trị x nguyên thỏa mãn \(\left|2x-7\right|+\left|2x+1\right|\le8\)

Câu 3: Giá trị lớn nhất của \(B=3-\sqrt{x^2-25}\)

Câu 4: Số phần tử của tập hợp \(\left\{x\in Z\left|x-2\right|\le9\right\}\)

Câu 5: Giá trị nhỏ nhất của biểu thức D= \(\frac{-3}{x^2+1}-2\)

Câu 6: Có bao nhiêu cặp số (x;y) thỏa mãn đẳng thức xy=x+y

Câu 7: Gọi A là tập hợp các số nguyên dương sao cho giá trị của biểu thức: \(\frac{2\sqrt{x}+3}{\sqrt{x}-1}\) là nguyên. Số phần tử của tập hợp A là...

Câu 8: Cho x;y là các số thỏa mãn \(\left(x+6\right)^2+\left|y-7\right|=0\) khi đó x+y=...

Câu 9: Phân số dương tối giản có mẫu khác 1, biết rằng tổng của tử và mẫu số bằng 18, nó có thể viết dưới dạng số thập phân hữu hạn. Có... phân số thỏa mãn 

 

0
18 tháng 12 2016

thanks

 

30 tháng 5 2019

Ta có: \(\frac{x+1}{7}=0\Leftrightarrow x+1=0\)

                                 \(\Leftrightarrow x=-1\)

Ta có: \(\frac{3x+3}{5}=0\)

\(\Leftrightarrow3x+3=0\)

\(\Leftrightarrow3x=-3\)

\(\Leftrightarrow x=-1\)

30 tháng 5 2019

Ta có: \(\frac{2x\left(x+1\right)}{3x+4}=0\Leftrightarrow2x\left(x+1\right)=0\)

\(\Leftrightarrow x\left(x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)

Vậy x \(\in\left\{-1;0\right\}\) thì \(\frac{2x\left(x+1\right)}{3x+4}=0\)

Ta có: \(\frac{2x\left(x-5\right)}{x-7}=0\Leftrightarrow2x\left(x-5\right)=0\)

\(\Leftrightarrow x\left(x-5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=5\end{cases}}\)

Vậy \(x\in\left\{0;5\right\}\) thì \(\frac{2x\left(x-5\right)}{x-7}=0\)

5 tháng 5 2017

\(3x-2y+1=0\Rightarrow y=\frac{3x+1}{2}\)

Do y nguyên nên \(\frac{3x+1}{2}\in Z\Rightarrow x=2k+1\)

Khi đó \(P=\left|x\right|+\left|\frac{3x+1}{2}\right|\), ta tiến hành phá dấu trị tuyệt đối của P.

Với \(x\le-\frac{1}{3}\) do x nguyên nên ta có thể coi như  \(x\le-1\)

Với \(x\le-1\Rightarrow P=-x-\frac{3x+1}{2}=-\frac{5x+1}{2}\ge2.\)

Khi đó minP = 2 khi x = -1, y = -1.

Với \(-\frac{1}{3}< x< 0\) không có giá trị x nguyên thỏa mãn.

Với \(x\ge0,\) do \(x=2k+1\Rightarrow\) ta có thể coi \(x\ge1\)

Với \(x\ge1\Rightarrow P=x+\frac{3x+1}{2}=\frac{5x+1}{2}\ge3\)

Vậy \(minP=3\)  khi \(x=1\Rightarrow y=2\)

Tóm lại \(minP=2\) khi x = -1, y = -1.

20 tháng 11 2018

Ta có: \(f\left(671.3+1\right)=\left(671-670\right)\left(671-672\right)\Rightarrow f\left(2014\right)=1.\left(-1\right)=-1\)

20 tháng 11 2018

Ta có: \(3x+1=2014\)

\(\Rightarrow3x=2013\)\(\Rightarrow x=671\)

Thay \(x=671\)vào hàm số trên ta được: 

\(\left(671-670\right).\left(671-672\right)=1.\left(-1\right)=-1\)

Vậy \(f\left(2014\right)=-1\)

28 tháng 11 2016

Câu 1: Giá trị của x thỏa mãn

|x+2,37|+|y5,3|=0

Để GTBT bằng 0 thì |x+2,37| = 0 và |y5,3| = 0

-> x = -2,37 , y = 5,3

Vậy x = -2,37

Câu 2: Giá trị của y thỏa mãn

−|2x+\(\frac{4}{7}\)|−|y−1,37| = 0

-> |2x+\(\frac{4}{7}\) = 0 -> x = \(-\frac{2}{7}\)

-> |y−1,37| = 0 -> y = 1,37

Vậy y = 1,37

 

20 tháng 11 2018

Ta có: \(f\left(4^3+1\right)=4^2-4.3\Rightarrow f\left(65\right)=4\)

20 tháng 11 2018

Ta có: \(x^3+1=65\)

\(\Rightarrow x^3=64\)\(\Rightarrow x=4\)

Thay \(x=4\)vào hàm số ban đầu ta được

\(f\left(65\right)=4^2-3.4=16-12=4\)

Vậy \(f\left(65\right)=4\)