K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2021

\(S=2+2^2+2^3+...+2^{99}\)

\(=\left(2+2^2+2^3+2^4\right)+...+2^{95}\left(2+2^2+2^3+2^4\right)\)

\(=30\left(1+...+2^{95}\right)⋮10\)

24 tháng 8 2015

S = (2+2^3)+(2^5+2^7) +...+(2^97+2^99)

S= 2(1+4) + 2^5(1+4) + ... + 2^97(1+4)

S= 2x5    +    2^5 x 5  + ... +  2^97

S= 5(2+2^5+..+2^97) chia hết cho 5

Ta có S chia hết cho 2 với 5 nên S chia hết cho 10 ( vì (2;5) = 1)

24 tháng 8 2015

S=2+23+25+…+299

=>S=(2+23)+(25+27)+…+(297+299)

=>S=2.(1+22)+25.(1+22)+…+297.(1+22)

=>S=2.5+25.5+…+297.5

=>S=2.5+24.2.5+…+298.2.5

=>S=10+24.10+…+298.10

=>S=(1+24+…+298).10 chia hết cho 10

=>S chia hết cho 10

S=(1+24+…+298).10

=>S=(1+24+…+298).2.5 chia hết cho 5

=>S chia hết cho 5

=>ĐPCM

16 tháng 10 2015

Có các số hạng của A\S chia hết cho 2

=> S chia hết cho 2

S = 2+23+25+.....+299

S = (2+23)+(25+27)+....+(297+299)

S = 1.(2+23) + 24(2+23) +....+ 296(2+23)

S = 1.10 + 24.10 +....+ 296.10

S = 10.(1+24+...+296) chia hết cho 10

KL: S chia hết cho 2 và 10 (Đpcm)

29 tháng 9 2017

a) \(S=2+2^3+2^5+2^7+...+2^{97}+2^{99}\)

\(=\left(2+2^3\right)+\left(2^5+2^7\right)+...+\left(2^{97}+2^{99}\right)\)

\(=2\left(1+2^2\right)+2^5\left(1+2^2\right)+...+2^{97}\left(1+2^2\right)\)

\(=2.5+2^5.5+...+2^{97}.5\)

\(=5\left(2+2^5+...+2^{97}\right)\) chia hết cho 5 (1)

b)\(S=2+2^3+2^5+2^7+...+2^{97}+2^{99}\)\(=2\left(1+2^2+2^4+...+2^{98}\right)\) chia hết cho 2 (2)

Từ (1) và (2) và (2;5)=1 => S chia hết cho 2.5=10 

30 tháng 9 2017

cho mình hỏi bạn lấy 2.{1+22 }+25 [1+22 ]+.....+297 [1+22 ] ở đâu ra

4 tháng 10 2016

a) \(\Rightarrow S=\left(1+3\right)+\left(3^2+3^3\right)+.....+\left(3^{88}+3^{99}\right)\)

\(\Rightarrow A=1\left(1+3\right)+3^2\left(1+3\right)+......+3^{88}\left(1+3\right)\)

\(\Rightarrow A=1.4+3^2.4+..........+3^{88}.4\)

\(\Rightarrow A=4.\left(1+3^2+.........+3^{88}\right)\)

Vậy A chia hết cho 4     ĐPCM

b) \(\Rightarrow A=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)\)\(+......+\left(3^{96}+3^{97}+3^{98}+3^{99}\right)\)

\(\Rightarrow A=1\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)+\)\(....+3^{96}\left(1+3+3^2+3^3\right)\)

\(\Rightarrow A=1.40+3^4.40+.......+3^{96}.40\)

\(\Rightarrow A=40.\left(1+3^4+....+3^{96}\right)\)

Vậy A chia hết cho 40      ĐPCM

22 tháng 2 2017

S = 1 + 32 + 34 + 36 + ... + 392 + 394 + 396 + 398

= (1 + 32) + (34 + 36) + ... + (392 + 394)+ (396 + 398)

= (1 + 32) + 34(1 + 32) + .... + 392(1 + 32) + 396(1 + 32)

= (1 + 9) + 34(1 + 9) + ..... + 392.( 1 + 9) + 396(1 + 9)

= 10 + 34.10 + ...... + 392.10 + 396.10

= 10(1 + 34 + ..... + 392 + 396) Chia hết cho 10

=> S Chia hết cho 10 (ĐPCM)

22 tháng 2 2017

S=1+3^2+,,,,,,,+3^97+3^98

S=(1+3^2)+.............+(3^97+3^98)

S=(1+3^2)+............+3^97.(1+3^2)

S=(1+9)+........+3^97.(1+9)

S=10+......+3^97.10 \(⋮\)10

Vì (1+9=10\(⋮\)10)

=>S\(⋮10\)

20 tháng 12 2017

S=\(\left(2+2^2\right)+\left(2^3+2^4\right)\)+......+\(\left(2^{99}+2^{100}\right)\)

=2(

3 tháng 2 2018

A = 2 + 22 + 23 +...+ 2100
<=> A = ( 2+22 ) + ( 23+24 ) +...+( 299 + 2100 )
<=> A = 6+ 22 ( 2+22 )+ ...+ 298 (2+22 )
<=> A = 6+ 22 .6+ ...+ 298 .6
<=> A = 6.(22+...+298 ) chia hết cho 3 ( vì 6 chia hết cho 3)

10 tháng 5 2018

\(S=\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{99^2}+\frac{1}{100^2}\)

Ta có:

\(\frac{1}{3^2}=\frac{1}{9}< \frac{1}{6}=\frac{1}{2.3}\)

\(\frac{1}{4^2}=\frac{1}{16}< \frac{1}{12}=\frac{1}{3.4}\)

Tương tự đến hết thì:

\(\frac{1}{100^2}=\frac{1}{10000}< \frac{1}{9900}=\frac{1}{99.100}\)

=> \(\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{99^2}+\frac{1}{100^2}< \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{98.99}+\frac{1}{99.100}\)

=>\(S< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)

=>\(S< \frac{1}{2}-\frac{1}{100}< \frac{1}{2}\)

=> \(S< \frac{1}{2}\)

10 tháng 5 2018

nhận xét

\(\frac{1}{3^2}=\frac{1}{3.3}< \frac{1}{2\cdot3}=\frac{1}{2}-\frac{1}{3}\)

\(\frac{1}{4^2}=\frac{1}{4\cdot4}< \frac{1}{3\cdot4}=\frac{1}{3}-\frac{1}{4}\)

...........................................

\(\frac{1}{99^2}=\frac{1}{99\cdot99}< \frac{1}{98\cdot99}=\frac{1}{98}-\frac{1}{99}\)

\(\frac{1}{100^2}=\frac{1}{100\cdot100}< \frac{1}{99\cdot100}=\frac{1}{99}-\frac{1}{100}\)

ta có

S=\(\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{99^2}+\frac{1}{100^2}< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)

S=\(\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{99^2}+\frac{1}{100^2}< \frac{1}{2}-\frac{1}{100}< \frac{1}{2}\)

=>S<\(\frac{1}{2}\)

   Vậy S<\(\frac{1}{2}\)

12 tháng 8 2018

a) Đặt biểu thức trên là A, ta có:

A = 21 + 22 + 23 + 24 + ... + 299 + 2100

=> A = (21 + 22) + (23 + 24) + ... + (299 + 2100)

=> A = 21.(1 + 2) + 23.(1 + 2) + ... + 299.(1 + 2)

=> A = 21.3 + 23.3 + ... + 299.3

=> A = 3(21 + 23 + ... + 299)

=> A ⋮ 3

\(26=13.2\)

\(s=3.\left(1+3+9\right)+3^4.\left(1+3+9\right)+....+3^{2012}.\left(1+3+9\right)\)

\(s=3.13+3^413+.....+3^{2012}.13\)

\(s=13.\left(3+3^4+....+3^{2012}\right)\)

\(\Rightarrow s=3.\left(1+3\right)+3^3.\left(1+3\right)+.......+3^{2015}.\left(1+3\right)\)

\(s=3.4+3^3.4+....+3^{2015}.4\)

\(s=4.\left(3+3^3+.....+3^{2015}\right)\)

\(\Rightarrow4⋮2\Rightarrow4.\left(3+3^3+....+3^{2015}\right)⋮2\)

\(\Rightarrow s⋮2\Leftrightarrow s⋮13\)

\(\Rightarrow s⋮\orbr{\begin{cases}13\\2\end{cases}}\Leftrightarrow s⋮26\)

10 tháng 8 2018

(1+3)+32(1+3+32+33)+36(1+3+32+33)+...+396(1+3+32+33)

=4+32.40+36.40+....+396.40

=4+(32+36+....+396).40:40;4+(32+36+....396).40:4