K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2015

S = (2+2^3)+(2^5+2^7) +...+(2^97+2^99)

S= 2(1+4) + 2^5(1+4) + ... + 2^97(1+4)

S= 2x5    +    2^5 x 5  + ... +  2^97

S= 5(2+2^5+..+2^97) chia hết cho 5

Ta có S chia hết cho 2 với 5 nên S chia hết cho 10 ( vì (2;5) = 1)

24 tháng 8 2015

S=2+23+25+…+299

=>S=(2+23)+(25+27)+…+(297+299)

=>S=2.(1+22)+25.(1+22)+…+297.(1+22)

=>S=2.5+25.5+…+297.5

=>S=2.5+24.2.5+…+298.2.5

=>S=10+24.10+…+298.10

=>S=(1+24+…+298).10 chia hết cho 10

=>S chia hết cho 10

S=(1+24+…+298).10

=>S=(1+24+…+298).2.5 chia hết cho 5

=>S chia hết cho 5

=>ĐPCM

16 tháng 10 2015

Có các số hạng của A\S chia hết cho 2

=> S chia hết cho 2

S = 2+23+25+.....+299

S = (2+23)+(25+27)+....+(297+299)

S = 1.(2+23) + 24(2+23) +....+ 296(2+23)

S = 1.10 + 24.10 +....+ 296.10

S = 10.(1+24+...+296) chia hết cho 10

KL: S chia hết cho 2 và 10 (Đpcm)

26 tháng 9 2016
  • 94260 - 35137

= (9424)15 - (...1)

= (...6)15 - (...1)

= (...6) - (...1)

= (...5) \(⋮5\left(đpcm\right)\)

  • 995 - 984 + 973 - 962

= 994.99 - (...6) + (...3) - (...6)

= (...1).99 - (...3) - (...6)

= (...9) - (...9)

= (...0) \(⋮2\) và \(5\) (đpcm)

  • 1050 + 5

= 1000...0 + 5 = 1000....05 chia hết cho 5 (1)

  (50 chữ số 0)  (49 c/s 0)

Như vậy, tổng các chữ số của 1050 + 5 là: 1 + 0 + 0 + 0 + ... + 0 + 5 = 6 chia hết cho 3                                                        (49 số 0)

Mà 1 số và tổng các chữ số của nó có cùng số dư trong phép chia cho 3

=> \(10^{50}+5⋮3\) (2)

Từ (1) và (2) => đcpm

 

8 tháng 9 2017

Ta có \(S=2+2^3+...+2^{99}\)

\(\Rightarrow2S=2^2+2^4+2^5+...+2^{100}\)

\(\Rightarrow2S=S-6+2^{100}\)

\(\Rightarrow S=2^{100}-6=2\left(2^{99}-3\right)\)

Ta thấy 24k có tận cùng là  6; 24k+1 có tận cùng là 2; 24k+2 có tận cùng là 4; 24k+3 có tận cùng là 8.

Mà 99 = 4.24 + 3 nên 299 có tận cùng là 8. Vậy thì 299 - 3 có tận cùng là 5 nên chia hết cho 5.

Tóm lại S chia hết cho 10 và 5.

8 tháng 9 2017

22 đâu bạn?

24 tháng 10 2018

\(S1=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{99}+5^{100}\right)\)

\(=5.\left(1+5\right)+5^3.\left(1+5\right)+...+5^{99}.\left(1+5\right)\)

\(=5.6+5^3.6+...+5^{99}.6\)

\(=6.\left(5+5^3+...+5^{99}\right)⋮6\)

câu b tương tự

\(S3=16^5+21^5\)

vì 16+21=33 chia hết cho 33

=>165+215 chia hết cho 33

P/S: theo công thức:(n+m chia hết cho a=> nb+mchia hết cho a)

S1 = 5+52+53+...+599+5100

=5. (1+5)+53 . (1+5) + ... + 599.(1+5)

= 5.6 +53.6+..+ 599.6

=6.(5+53 + ... +599):6

vậy x = ...

b)2+22+23+...+299+2100

=2.(1+2)+23.(1+2) + ... + 299.(1+2)

=2.3+23+..+299):3

= ....

c)165+215

vì 16+21 chia hế 33 nên

theo công thức(n+m chia hết cho a=(nb+mb)

27 tháng 11 2017

giúp mk ik

15 tháng 9 2015

a) 942^60 - 351^37 chia hết cho 5 
2^1 có c/số tận củng là 2 
2^2 có c/số tận củng là 4 
2^3 có c/số tận củng là 8 
2^4 có c/số tận củng là 6 
2^5 có c/số tận củng là 2 
................................ 
=>Các số có c/số tận cung là 2 có lũy thừa được kết quả có c/số tân cung lặp lại theo quy luật 1 nhóm 4 c/số sau (2;4;8;6) 
ta có 60: 4=15(nhóm) => 942^60 có c/số tận cùng là c/số tận cùng của nhóm thứ 15 và là c/số 6 
mặt khác 351^37 có kết quả có c/số tận cùng là 1 (vì 351 có c/số tận cung =1) 
=>kết quả phép trừ 942^60 - 351^37 có c/số tận cùng là: 6-1=5 
=>942^60 - 351^37 chia hết cho 5 
b/ giải thích tương tự câu a ta có 
99^5 có c/số tận cùng là: 9 
98^4 có c/số tận cung là: 6 
97^3 có c/số tận cùng là: 3 
96^2 có c/số tận cùng là: 6 
=> 99^5 - 98^4 + 97^3 - 96^2 có c/số tận cùng là: 9-6+3-6=0 
vậy 99^5 - 98^4 + 97^3 - 96^2 chia hết cho 2 và 5 vì có c/số tận cung là 0 (dâu hiệu chia hết cho 2 và 5)