Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\frac{x^3-x}{3x+3}=\frac{x.\left(x^2-1\right)}{3.\left(x+1\right)}=\frac{x.\left(x-1\right).\left(x+1\right)}{3.\left(x+1\right)}=\frac{x.\left(x+1\right)}{3}=\frac{x^2+x}{3}\)
\(\frac{x^4-y^4}{y^3-x^3}=\frac{\left(x^2+y^2\right)\left(x+y\right)\left(x-y\right)}{\left(y-x\right)\left(x^2+xy+y^2\right)}=-\frac{\left(x^2+y^2\right)\left(x+y\right)}{\left(x^2+xy+y^2\right)}\)
\(\frac{\left(2x-4\right)\left(x-3\right)}{\left(x-2\right)\left(3x^2-27\right)}=\frac{2\left(x-2\right)\left(x-3\right)}{\left(x-2\right)3\left(x-3\right)\left(x+3\right)}=\frac{2}{3\left(x+3\right)}\)
\(\frac{2x^3+x^2-2x-1}{x^3+2x^2-x-2}=\frac{\left(x-1\right)\left(x+1\right)\left(2x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x+2\right)}=\frac{2x+1}{x+2}\)
\(\frac{x^4-y^4}{y^3-x^3}=\frac{\left(x^2+y^2\right)\left(x+y\right)\left(x-y\right)}{\left(y-x\right)\left(x^2+xy+y^2\right)}=-\frac{\left(x^2+y^2\right)\left(x+y\right)}{\left(x^2+xy+y^2\right)}\)
A) X4 - y4 / y3 -x3 = (x2) 2 - (y2 )2 / (y-x)(y^2+xy+x^2)= (x^2-y^2)(x^2+y^2) / (y-x)(y^2+xy+x^2)=-(x-y)(x+y)(x^2+y^2) / (x-y)(x^2+xy+y^2)= - (x+y)(x^2+y^2) / x^2 + xy + y^2
Câu b, bạn nhóm các hạng tử vào vs nhau sẽ xuất hiện nhân tử chung rồi rút gọn đi là ok. Nhóm 2x^3 vs -2x, x^2 vs cộng 1 thì đặt dấu trừ ra ngoài.. Bên dưới nhóm x^3 vs -x,2x^2 vs -2
a) \(A=\frac{4x-1}{x-2}-\frac{x-3}{x-1}+\frac{-2x+4}{x^2-3x+2}\)
\(\Leftrightarrow A=\frac{4x-1}{x-2}-\frac{x-3}{x-1}+\frac{-2x+4}{x^2-x-2x+2}\)
\(\Leftrightarrow A=\frac{4x-1}{x-2}-\frac{x-3}{x-1}+\frac{-2x+4}{x\left(x-1\right)-2\left(x-1\right)}\)
\(\Leftrightarrow A=\frac{4x-1}{x-2}-\frac{x-3}{x-1}+\frac{-2x+4}{\left(x-1\right)\left(x-2\right)}\)
\(\Leftrightarrow A=\frac{\left(4x-1\right)\left(x-1\right)-\left(x-3\right)\left(x-2\right)-2x+4}{\left(x-2\right)\left(x-1\right)}\)
\(\Leftrightarrow A=\frac{4x^2-4x-x+1-x^2+2x+3x-6-2x+4}{\left(x-2\right)\left(x-1\right)}\)
\(\Leftrightarrow A=\frac{3x^2-2x-1}{\left(x-2\right)\left(x-1\right)}\)
\(\Leftrightarrow A=\frac{3x^2-3x+\left(x-1\right)}{\left(x-2\right)\left(x-1\right)}\)\(=\frac{3x\left(x-1\right)+\left(x-1\right)}{\left(x-2\right)\left(x-1\right)}\)\(=\frac{\left(x-1\right)\left(3x+1\right)}{\left(x-2\right)\left(x-1\right)}\)\(=\frac{3x+1}{x-2}\)
b)\(\frac{3x+1}{x-2}=\frac{3x-6+7}{x-2}=\frac{3x-6}{x-2}+\frac{7}{x-2}=3+\frac{7}{x-2}\)
Ta có : \(x-2\inƯ_7\left\{-7;-1;1;7\right\}\)
\(\Rightarrow\left[\begin{array}{nghiempt}x-2=-7\\x-2=-1\\x-2=1\\x-2=7\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}\text{x=-5}\\\text{x=1}\\\text{x=3}\\\text{x}=9\end{array}\right.\)
\(\text{x}=1\) (loại)
Vậy giá trị nguyên tập hợp x là:
x=-5;3;9
a. A=\(1+\left(\frac{x+1}{x^3+1}-\frac{1}{x-x^2-1}-\frac{2}{x+1}\right):\frac{x^3-2x^2}{x^3-x^2+x}\)
\(=1+\left(\frac{x+1+x+1-2\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\right).\frac{x\left(x^2-x+1\right)}{x^2\left(x-2\right)}\)
\(=1+\frac{-2x^2+4x}{\left(x+1\right)\left(x^2-x+1\right)}.\frac{x^2-x+1}{x\left(x-2\right)}\)
\(=1+\frac{-2x\left(x-2\right)}{\left(x+1\right)\left(x^2-x+1\right)}.\frac{x^2-x+1}{x\left(x-2\right)}\)
\(=1-\frac{2}{x+1}=\frac{x-1}{x+1}\)
b.\(\left|x-\frac{3}{4}\right|=\frac{5}{4}\Rightarrow\orbr{\begin{cases}x-\frac{3}{4}=\frac{5}{4}\\x-\frac{3}{4}=-\frac{5}{4}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=2\\x=-\frac{1}{2}\end{cases}}\)
Với \(x=2\Rightarrow A=\frac{2-1}{2+1}=\frac{1}{3}\)
Với \(x=-\frac{1}{2}\Rightarrow A=\frac{-\frac{1}{2}-1}{-\frac{1}{2}+1}=-3\)
Answer:
a) \(Q=\left(\frac{x+1}{x^3+1}-\frac{1}{x-x^2-1}-\frac{2}{x+1}\right):\frac{4-2x}{x^3-x^2+x}\)
\(=\left(\frac{x+1}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{1}{x^2-x+1}-\frac{2}{x+1}\right).\frac{x\left(x^2-x+1\right)}{4-2x}\)
\(=\frac{x+1+x+1-2\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}.\frac{x\left(x^2-x+1\right)}{2\left(2-x\right)}\)
\(=\frac{\left(-2x^2+4x\right)-x}{\left(x+1\right)-2\left(2-x\right)}\)
\(=\frac{+2x^2\left(-x+2\right)}{\left(x+1\right)-2\left(2-x\right)}\)
\(=\frac{x^2}{x+1}\)
b) \(\left|x-\frac{3}{4}\right|=\frac{5}{4}\)
\(\Leftrightarrow\orbr{\begin{cases}x-\frac{3}{4}=\frac{5}{4}\\x-\frac{3}{4}=\frac{-5}{4}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=\frac{-1}{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}Q=\frac{4}{3}\\Q=\frac{1}{2}\end{cases}}\)
Bài làm
a) \(Q=\left(\frac{x+1}{x^3+1}-\frac{1}{x-x^2-1}-\frac{2}{x+1}\right):\frac{4-2x}{x^3-x^2+x}\)
\(Q=\left(\frac{x+1}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{1\left(x+1\right)}{\left(x^2-x+1\right)\left(x+1\right)}-\frac{2\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\right):\frac{4-2x}{x^3-x^2+x}\)
(bước trên là mình đổi dấu ở phân số thứ hai, dấu âm chuyển xuống dưới mẫu nên đổi dấu ở mẫu, sau đó nhân với cả cụm x + 1 nha, tại hơi tắt nên thêm dòng giải thích cho dễ hiểu)
\(Q=\left(\frac{x+1}{x^3+1}+\frac{x+1}{x^3+1}-\frac{2x^2-2x+2}{x^3+1}\right):\frac{4-2x}{x^3-x^2+x}\)
\(Q=\frac{-2x^2+4x}{x^3+1}\cdot\frac{x\left(x^2-x+1\right)}{4-2x}\)
\(Q=\frac{x\left(4-2x\right)}{\left(x+1\right)\left(x^2-x+1\right)}\cdot\frac{x\left(x^2-x+1\right)}{4-2x}\)
\(Q=\frac{x^2}{x+1}\)
b) Ta có: \(\left|x-\frac{3}{4}\right|=\frac{5}{4}\)
=> \(x-\frac{3}{4}=\pm\frac{5}{4}\)
=> \(\orbr{\begin{cases}x-\frac{3}{4}=\frac{5}{4}\\x-\frac{3}{4}=-\frac{5}{4}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-\frac{1}{2}\end{cases}}}\)
*Trường hợp 1: Khi x = 2
Thay x = 2 vào \(Q=\frac{x^2}{x+1}\)ta được:
\(Q=\frac{2^2}{2+1}=\frac{4}{3}\)
Vậy khi x = 2 thì Q = 4/3
*Trường hợp 2: Khi x = -1/2
Thay x = -1/2 vào \(Q=\frac{x^2}{x+1}\)ta được:
\(Q=\frac{\left(-\frac{1}{2}\right)^2}{-\frac{1}{2}+1}=\frac{\frac{1}{4}}{\frac{1}{2}}=\frac{1}{4}:\frac{1}{2}=\frac{1}{4}\cdot2=\frac{1}{2}\)
Vậy x = -1/2 thì Q = 1/2