Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Q=\frac{1}{\frac{x}{y}+\frac{z}{x}+1}+\frac{1}{\frac{y}{z}+\frac{x}{y}+1}+\frac{1}{\frac{z}{x}+\frac{y}{z}+1}\)
Đặt \(\left(\frac{x}{y};\frac{y}{z};\frac{z}{x}\right)=\left(a^3;b^3;c^3\right)\Rightarrow abc=1\)
\(Q=\frac{1}{a^3+c^3+1}+\frac{1}{a^3+b^3+1}+\frac{1}{b^3+c^3+1}\)
Ta có: \(a^3+b^3=\left(a+b\right)\left(a^2+b^2-ab\right)\ge\left(a+b\right)\left(2ab-ab\right)=ab\left(a+b\right)\)
\(\Rightarrow Q\le\frac{1}{ac\left(a+c\right)+1}+\frac{1}{ab\left(a+b\right)+1}+\frac{1}{bc\left(b+c\right)+1}\)
\(Q\le\frac{abc}{ac\left(a+c\right)+abc}+\frac{abc}{ab\left(a+b\right)+abc}+\frac{abc}{bc\left(b+c\right)+abc}\)
\(Q\le\frac{b}{a+b+c}+\frac{c}{a+b+c}+\frac{a}{a+b+c}=1\)
\(\Rightarrow Q_{max}=1\) khi \(a=b=c=1\) hay \(x=y=z\)
13:
xy(x+y)+yz(y+z)+xz(x+z)+2xyz
= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz
= xy(x + y) + yz(y + z + x) + xz(x + z + y)
= xy(x + y) + z(x + y + z)(y + x)
= (x + y)(xy + zx + zy + z²)
= (x + y)[x(y + z) + z(y + z)]
= (x + y)(y + z)(z + x)
Bạn tham khảo:
Câu hỏi của Online Math - Toán lớp 8 | Học trực tuyến
Lời giải:
\(yz-xz-xy=0\Rightarrow yz-xz=xy\)
\(B=\frac{yz}{x^2}-\frac{zx}{y^2}-\frac{xy}{z^2}\)\(=\frac{(yz)^3-(xz)^3-(xy)^3}{x^2y^2z^2}\)
Xét: \((yz)^3-(xz)^3-(xy)^3=(yz-xz)^3+3yz.xz(yz-xz)-(xy)^3\)
\(=(xy)^3+3yz.xz.xy-(xy)^3=3x^2y^2z^2\)
\(\Rightarrow B=\frac{(yz)^3-(xz)^3-(xy)^3}{x^2y^2z^2}=\frac{3x^2y^2z^2}{x^2y^2z^2}=3\)
Lời giải:
$P=(xy+yz+xz)^2+(x^2-yz)^2+(y^2-zx)^2+(z^2-xy)^2$
$=x^2y^2+y^2z^2+z^2x^2+2x^2yz+2xy^2z+2xyz^2+x^4+y^2z^2-2x^2yz+y^4+z^2x^2-2xzy^2+z^4+x^2y^2-2xyz^2$
$=x^4+y^4+z^4+2x^2y^2+2y^2z^2+2z^2x^2$
$=(x^2+y^2+z^2)^2=10^2=100$
\(\dfrac{x^2-xy+y^2-zx}{x^2+xy-y^2-zx}=\dfrac{-xy+y^2}{xy-y^2}=\dfrac{y\left(y-x\right)}{-y\left(y-x\right)}\dfrac{y}{-y}=-y\)
\(\dfrac{y\left(y-x\right)}{-y\left(y-x\right)}=\dfrac{y}{-y}=-y\)
sửa lại cái này nha bạn mình nhầm