
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



\(\sqrt{x-1-2\sqrt{x-1}+1}\)+\(\sqrt{x-1+4\sqrt{x-1}+4}\) (\(x\ge1\)
=\(\left|\sqrt{x-1}-1\right|+\left|\sqrt{x-1}-2\right|\)
dat \(\sqrt{x-1}=t\left(t\ge0\right)\)
ta co \(\left|t-1\right|+\left|t-2\right|\)
t |t-1| |t-2| 1 2 0 0 + - - +
nenta co voi0<= t<1 \(1-t+2-t=3-t=3-2\sqrt{x-1}\)
voi 1\(\le t\le2\) \(t-1+2-t=3\)
voi t>2 \(t-1+t-2=2t-3=2\sqrt{x-1}-3\)
b,\(\sqrt{x-4-4\sqrt{x-4}+4}\) =\(\left|\sqrt{x-4}-2\right|\)

dkxd \(x\ge4\)
A=\(\sqrt{x-4+4\sqrt{x-4}+4}\) +\(\sqrt{x-4-4\sqrt{x-4}+4}\)
=\(\sqrt{x-4}+2+\left|\sqrt{x-4}-2\right|\)
th1 \(\sqrt{x-4}\ge2\Leftrightarrow x\ge8\)
ta co\(\sqrt{x-4}+2+\sqrt{x-4}-2=2\sqrt{x-4}\)
th2 \(4\le x< 8\)
ta co \(\sqrt{x-4}+2+2-\sqrt{x-4}=4\)

cách khác nhé:
ĐK: \(x\ge4\)
\(B=\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}\)
\(=\sqrt{\left(x-4\right)+4\sqrt{x-4}+4}+\sqrt{\left(x-4\right)-4\sqrt{x-4}+4}\)
\(=\sqrt{\left(\sqrt{x-4}+2\right)^2}+\sqrt{\left(\sqrt{x-4}-2\right)^2}\)
\(=\sqrt{x-4}+2+\left|\sqrt{x-4}-2\right|\)
Nếu \(4\le x< 8\)thì: \(B=\sqrt{x-4}+2+2-\sqrt{x-4}=4\)
Nếu \(x\ge8\)thì: \(B=\sqrt{x-4}+2+\sqrt{x-4}-2=2\sqrt{x-4}\)
\(B=\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}\)
\(\Leftrightarrow B^2=\left(\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}\right)^2\)
\(=x+4\sqrt{x-4}+x-4\sqrt{x-4}+2\sqrt{\left(x+4\sqrt{x-4}\right)\left(x-4\sqrt{x-4}\right)}\)
\(=2x+2\sqrt{x^2-\left(4\sqrt{x-4}\right)^2}\)
\(=2x+2\sqrt{x^2-16\left(x-4\right)}=2x+2\sqrt{x^2-16x+64}\)
\(=2x+2\sqrt{\left(x-8\right)^2}=2x+2\left|x-8\right|\)
Nếu \(x-8\ge0\Rightarrow x\ge8\) thì 2x + 2(x-8) = 2x + 2x - 16 = 4x -16 = 4(x-4)
Nếu x - 8 < 0 => x < 8 thì 2x + 2(8 - x) = 2x + 16 - 2x = 0x + 16


ĐKXĐ: x > 4
a, Có \(A=\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}\)
\(=\sqrt{x-4+4\sqrt{x-4}+4}+\sqrt{x-4-4\sqrt{x-4}+4}\)
\(=\sqrt{\left(\sqrt{x-4}+2\right)^2}+\sqrt{\left(\sqrt{x-4}-2\right)^2}\)
\(=\sqrt{x-4}+2+\left|\sqrt{x-4}-2\right|\)
\(\orbr{\begin{cases}=2\sqrt{x-4}\left(với\sqrt{x-4}\ge2\right)\\=4\left(với\sqrt{x-4}< 2\right)\end{cases}}\)
b, Xét \(A=2\sqrt{x-4}\)thì \(\sqrt{x-4}\ge2\)
\(\Leftrightarrow x-4\ge4\)
\(\Leftrightarrow x\ge8\)
Khi đó \(A=2\sqrt{x-4}\ge2\sqrt{8-4}=4\)
Nên \(A_{min}=4\Leftrightarrow x=8\)
c, Với \(x=\sqrt{15+\sqrt{6}}\)thì \(\sqrt{x-4}=\sqrt{\sqrt{15+\sqrt{6}}-4}< 2\)
Nên từ câu a => A = 4

ĐKXĐ: x >= 4
Bình phương hai vế ta có : x + \(\sqrt{x-4}\)+ x - \(\sqrt{x-4}\)
= 2x
Theo Bình phương 2 vế ta có :
\(\sqrt{x-4}\)+ X - \(\sqrt{x-4}\)
~ Hok tốt ~
#Gumball
Bổ sung ĐK : x >= 0
\(\sqrt{x-4\sqrt{x}+4}=\sqrt{\left(\sqrt{x}-2\right)^2}=\left|\sqrt{x}-2\right|=\sqrt{x}-2\)
sửa Với đk x >= 0
thì \(\left|x-2\right|=\left|2-x\right|=2-x\)