\(P=\frac{x\sqrt{x}-2x+28}{x-3\sqrt{x}-4}-\frac{\sqrt{x}-4}{\sqrt{x}+1}+\frac{\sqrt{x}+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2018

=\(\frac{x\sqrt{x}-2x+28}{x-3\sqrt{x}-4}\)\(\frac{\sqrt{x}-4}{\sqrt{x}+1}\)\(\frac{\sqrt{x}+8}{\sqrt{x}-4}\)

\(\frac{x\sqrt{x}-2x+28-\left(x-16\right)-\left(\sqrt{x}+1\right)\left(\sqrt{x}+8\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-4\right)}\)

=\(\frac{x\sqrt{x}-2x+28-x+16-\left(x+9\sqrt{x}+8\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-4\right)}\)

=\(\frac{x\sqrt{x}-3x+44-x-9\sqrt{x}-8}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-4\right)}\)

=\(\frac{x\sqrt{x}-9\sqrt{x}-4x+36}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-4\right)}\)

=\(\frac{\sqrt{x}\left(x-9\right)-4\left(x-9\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-4\right)}\)\(\frac{\left(\sqrt{x}-4\right)\left(x-9\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-4\right)}\)

=\(\frac{x-9}{\sqrt{x}+1}\)

28 tháng 10 2017

\(B=\frac{2\left(x+4\right)}{x-3\sqrt{x}-4}+\frac{\sqrt{x}}{\sqrt{x}+1}-\frac{8}{\sqrt{x}-4}\)

\(B=\frac{2\left(x+4\right)+\sqrt{x}\left(\sqrt{x}-4\right)-8\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-4\right)}\)

\(B=\frac{2x+8+x-4\sqrt{x}-8\sqrt{x}-8}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-4\right)}\)

\(B=\frac{3x-12\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-4\right)}\)

\(B=\frac{3\sqrt{x}\left(\sqrt{x}-4\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-4\right)}\)

\(B=\frac{3\sqrt{x}}{\sqrt{x}+1}\)

vậy \(B=\frac{3\sqrt{x}}{\sqrt{x}+1}\)

8 tháng 3 2022

a, Với x >= 0 ; x khác 16 

\(A=\left(\frac{x+5\sqrt{x}-27+\left(3-\sqrt{x}\right)\left(\sqrt{x}+4\right)}{x-16}\right):\frac{1}{\sqrt{x}+4}\)

\(=\left(\frac{x+5\sqrt{x}-27+3\sqrt{x}+12-x-4\sqrt{x}}{x-16}\right):\frac{1}{\sqrt{x}+4}\)

\(=\left(\frac{4\sqrt{x}-15}{x-16}\right):\frac{1}{\sqrt{x}+4}=\frac{4\sqrt{x}-15}{\sqrt{x}-4}\)

b, Ta có \(B=-2A\Rightarrow\sqrt{x}-4=-\frac{8\sqrt{x}-30}{\sqrt{x}-4}\)

\(\Leftrightarrow x-8\sqrt{x}+16=-8\sqrt{x}+30\Leftrightarrow x-14=0\Leftrightarrow x=14\left(tm\right)\)

27 tháng 2 2022

Trả lời:

 \(B=\left(\frac{\sqrt{x}}{\sqrt{x}+4}+\frac{4}{\sqrt{x}-4}\right):\frac{x+16}{\sqrt{x}+2}\left(ĐK:x\ge0;x\ne16\right)\)

\(=\frac{\sqrt{x}\left(\sqrt{x}-4\right)+4\left(\sqrt{x}+4\right)}{\left(\sqrt{x}+4\right)\left(\sqrt{x}-4\right)}\cdot\frac{\sqrt{x}+2}{x+16}\)

\(=\frac{x-4\sqrt{x}+4\sqrt{x}+16}{\left(\sqrt{x}+4\right)\left(\sqrt{x}-4\right)}\cdot\frac{\sqrt{x}+2}{x+16}\)

\(=\frac{x+16}{\left(\sqrt{x}+4\right)\left(\sqrt{x}-4\right)}\cdot\frac{\sqrt{x}+2}{x+16}=\frac{\sqrt{x}+2}{x-16}\)

NV
3 tháng 9 2020

\(A=\frac{x\sqrt{x}-2x+28}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-4\right)}-\frac{\left(\sqrt{x}-4\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-4\right)}-\frac{\left(\sqrt{x}+8\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-4\right)}\)

\(=\frac{x\sqrt{x}-4x-\sqrt{x}+4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-4\right)}=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-4\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-4\right)}=\sqrt{x}-1\)

\(B=\sqrt{6+2\sqrt{6-2\sqrt{\left(\sqrt{3}+1\right)^2}}}\)

\(=\sqrt{6+2\sqrt{6-2\left(\sqrt{3}+1\right)}}=\sqrt{6+2\sqrt{4-2\sqrt{3}}}\)

\(=\sqrt{6+2\sqrt{\left(\sqrt{3}-1\right)^2}}=\sqrt{6+2\left(\sqrt{3}-1\right)}\)

\(=\sqrt{4+2\sqrt{3}}=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)

3 tháng 9 2020

cảm ơn anh nếu anh không phiền thì giải 2 câu kia nữa ạ

\(A=\sqrt{\dfrac{18-3\sqrt{3}}{11}}-\sqrt{2+\sqrt{3}}\)

\(=\dfrac{\sqrt{11\left(18-3\sqrt{3}\right)}}{11}-\dfrac{\sqrt{4+2\sqrt{3}}}{\sqrt{2}}\)

\(=\dfrac{\sqrt{11\left(18-3\sqrt{3}\right)}}{11}-\dfrac{\sqrt{3}+1}{\sqrt{2}}\)

\(=\dfrac{\sqrt{11\left(18-3\sqrt{3}\right)}}{11}-\dfrac{\sqrt{6}+\sqrt{2}}{2}\)

\(=\dfrac{2\sqrt{11\left(18-3\sqrt{3}\right)}-11\sqrt{6}-11\sqrt{2}}{22}\)

b: \(=\dfrac{x\sqrt{x}-2x+28-x+16-x-9\sqrt{x}-8}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x\sqrt{x}-4x-9\sqrt{x}+36}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+1\right)}=\dfrac{x-9}{\sqrt{x}+1}\)

21 tháng 7 2018

a. =\(\frac{x\sqrt{xy}+y\sqrt{x^2}-x\sqrt{y^2}-y\sqrt{xy}}{\sqrt{xy}}\)=\(\frac{x\sqrt{xy}+xy-xy-y\sqrt{xy}}{\sqrt{xy}}\)
=\(\frac{x\sqrt{xy}-y\sqrt{xy}}{\sqrt{xy}}\)=\(\frac{\sqrt{xy}\left(x-y\right)}{\sqrt{xy}}\)=\(x-y\)
b. =\(\frac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x-1}}\)=\(x+\sqrt{x}+1\)

2 tháng 3 2018

a) \(P=\left(\frac{x+8}{x\sqrt{x}+8}-\frac{1}{\sqrt{x}+2}\right):\left(1-\frac{x-3\sqrt{x}+6}{x-2\sqrt{x}+4}\right)\)

\(P=\frac{x+8-x+\sqrt{x}-4}{x\sqrt{x}+8}:\frac{x-2\sqrt{x}+4-x+3\sqrt{x}-6}{x-2\sqrt{x}+4}\)

\(P=\frac{\sqrt{x}+4}{x\sqrt{x}+8}:\frac{\sqrt{x}-2}{x-2\sqrt{x}+4}\)

\(P=\frac{\sqrt{x}+4}{\sqrt{x}+2}.\frac{1}{\sqrt{x}-2}\)

\(P=\frac{\sqrt{x}+4}{x-4}\)

b) Ta có \(x=6+4\sqrt{2}=2^2+2.2.\sqrt{2}+\left(\sqrt{2}\right)^2=\left(2+\sqrt{2}\right)^2\)

\(\Rightarrow\sqrt{x}=2+\sqrt{2}\)

Suy ra \(P=\frac{2+\sqrt{2}+4}{6+4\sqrt{2}-4}=\frac{6+\sqrt{2}}{4\sqrt{2}+2}=\frac{11\sqrt{2}-2}{14}\)

2 tháng 3 2018

cô  Hoàng Thị Thu Huyền  ơi e thấy có j đó sai sai ở đây 

chỗ dòng thứ 2 phải là 

\(P=\left[\frac{8}{\left(\sqrt{x}+2\right)\left(x-2\sqrt{x}+4\right)}-\frac{x-2\sqrt{x}+4}{\left(\sqrt{x}+2\right)\left(x-2\sqrt{x}+4\right)}\right]\) 

vì theo hằng đẳng thức   A+ B3= (A+B)(A2- AB +B2)

27 tháng 10 2020

a) \(\sqrt{12}-3\sqrt{75}+0,5\sqrt{\left(-6\right)^2\cdot3}\)

\(=2\sqrt{3}-15\sqrt{3}+0,5\sqrt{108}\)

\(=-13\sqrt{3}+3\sqrt{3}\)

\(=-10\sqrt{3}\)

b) \(3\sqrt{\left(\sqrt{2}-\sqrt{3}\right)^2}-\sqrt{4+2\sqrt{3}}\)

\(=3\left|\sqrt{2}-\sqrt{3}\right|-\sqrt{\left(\sqrt{3}+1\right)^2}\)

\(=3\left(\sqrt{3}-\sqrt{2}\right)-\left|\sqrt{3}+1\right|\)

\(=3\sqrt{3}-3\sqrt{2}-\sqrt{3}-1\)

\(=2\sqrt{3}-3\sqrt{2}-1\)

c) \(\left(\frac{2x+1}{x\sqrt{x}-1}-\frac{\sqrt{x}}{x+\sqrt{x}+1}\right)\div\frac{1}{x-2\sqrt{x}+1}\)

\(=\frac{2x+1-\left(\sqrt{x}-1\right)\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\div\frac{1}{\left(\sqrt{x}-1\right)^2}\)

\(=\frac{2x+1-x+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\left(\sqrt{x}-1\right)^2\)

\(=\frac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\left(\sqrt{x}-1\right)^2\)

\(=\sqrt{x}-1\)