\(\left(\frac{\sqrt{x}+1}{x-4}-\frac{\sqrt{x}-1}{x+4\sqrt{x}+4...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2016

a/ \(P=\left[1-\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right]:\left[\frac{3-\sqrt{x}}{\sqrt{x}-2}+\frac{\sqrt{x}-2}{\sqrt{x}+3}-\frac{9x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right]\)

\(=\left(1-\frac{\sqrt{x}}{\sqrt{x}+3}\right):\left[\frac{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)+\left(\sqrt{x}-2\right)^2-9x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right]\)

\(=\left(\frac{\sqrt{x}+3-\sqrt{x}}{\sqrt{x}+3}\right):\left[\frac{9-x+x-4\sqrt{x}+4-9x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right]\)

\(=\frac{3}{\sqrt{x}+3}.\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{13-4\sqrt{x}-9x}\)

\(=\frac{3\sqrt{x}-6}{13-4\sqrt{x}-9x}\)

b/ \(P=1\Rightarrow\frac{3\sqrt{x}-6}{13-4\sqrt{x}-9x}=1\Rightarrow3\sqrt{x}-6=13-4\sqrt{x}-9x\)

\(\Rightarrow9x+7\sqrt{x}-19=0\)

Mình k biết mình sai chỗ nào nữa, bạn xem giúp mình với

10 tháng 5 2018

a) \(A=\left(\frac{1}{\sqrt{x}+3}-\frac{4}{9-x}\right).\frac{2\sqrt{x}-6}{\sqrt{x}+1}\)

\(A=\left[\frac{\sqrt{x}-3}{x-9}+\frac{4}{x-9}\right].\frac{2\left(\sqrt{x}-3\right)}{\sqrt{x}+1}\)

\(A=\frac{\sqrt{x}-3+4}{x-9}.\frac{2\left(\sqrt{x}-3\right)}{\sqrt{x}+1}\)

\(A=\frac{\sqrt{x}+1}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\frac{2\left(\sqrt{x}-3\right)}{\sqrt{x}+1}\)

\(A=\frac{2}{\sqrt{x}+3}\)   

vậy \(A=\frac{2}{\sqrt{x}+3}\)

10 tháng 8 2021

Tui nhầm đề xíu, cái A kia phải là:   A=\(\sqrt{\left(1-\sqrt{5}\right)^2}-\frac{5-2\sqrt{5}}{\sqrt{5}}\)

10 tháng 8 2021

thảo nào rút gọn mãi nó chả mất căn :))

\(A=\sqrt{\left(1-\sqrt{5}\right)^2}-\frac{5-2\sqrt{5}}{\sqrt{5}}\)

\(=\sqrt{5}-1-\frac{5\sqrt{5}-10}{5}=\frac{5\sqrt{5}-5-5\sqrt{5}+10}{5}=\frac{5}{5}=1\)

Với \(x\ge0;x\ne4;9\)

\(P=\left(\frac{3\sqrt{x}+6}{x-4}+\frac{\sqrt{x}}{\sqrt{x}-2}\right):\frac{x-9}{\sqrt{x}-3}\)

\(=\left(\frac{3\sqrt{x}+6+\sqrt{x}\left(\sqrt{x}+2\right)}{x-4}\right):\left(\sqrt{x}+3\right)\)

\(=\left(\frac{x+5\sqrt{x}+6}{x-4}\right):\left(\sqrt{x}+3\right)=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}+3\right)}{\left(x-4\right)\left(\sqrt{x}+3\right)}=\frac{1}{\sqrt{x}-2}\)

b, \(2P-A< 0\Rightarrow\frac{2}{\sqrt{x}-2}-1< 0\)

\(\Leftrightarrow\frac{4-\sqrt{x}}{\sqrt{x}-2}< 0\Leftrightarrow\frac{\sqrt{x}-4}{\sqrt{x}-2}>0\)

TH1 : \(\hept{\begin{cases}\sqrt{x}-4>0\\\sqrt{x}-2>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>16\\x>4\end{cases}\Leftrightarrow x>16}\)

TH2 : \(\hept{\begin{cases}\sqrt{x}-4< 0\\\sqrt{x}-2< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 16\\x< 4\end{cases}}\Leftrightarrow x< 4}\)

Kết hợp với đk vậy \(0\le x< 4;x>16\)

21 tháng 3 2017

Ủa mua Vip là giáo viên trả lời hả? :>

\(P=\left(\frac{x+\sqrt{x}-4}{x+\sqrt{x}-3\sqrt{x}-3}+\frac{\sqrt{x}-1}{3-\sqrt{x}}\right):\left(\frac{\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-2}\right)\)

\(P=\left(\frac{x+\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}+1\right)-3\left(\sqrt{x}+1\right)}+\frac{\sqrt{x}-1}{3-\sqrt{x}}\right):\frac{1}{\sqrt{x}-2}\)

\(P=\left(\frac{x+\sqrt{x}-4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}-\frac{\sqrt{x}-1}{\sqrt{x}-3}\right).\left(\sqrt{x}-2\right)\)

\(P=\left(\frac{x+\sqrt{x}-4-\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}\right).\left(\sqrt{x}-2\right)\)

\(P=\frac{x+\sqrt{x}-4-x+\sqrt{x}-\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}.\left(\sqrt{x}-2\right)\)

\(P=\frac{\sqrt{x}-3}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}.\left(\sqrt{x}-2\right)\)

\(P=\frac{1}{\sqrt{x}+1}.\left(\sqrt{x}-2\right)\)

\(P=\frac{\sqrt{x}-2}{\sqrt{x}+1}\)

21 tháng 3 2017

Mình không biết ? Đọc trong THÔNG TIN ghi là GV trả lời cho VIP's member mà bạn.

26 tháng 2 2020

M = \(\frac{2\sqrt{x}-9x}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)

    =\(\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\left(\sqrt{x}+3\right)\left(3-\sqrt{x}\right)+\left(\sqrt{x}-2\right)\left(2\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(3-\sqrt{x}\right)}\)

    =\(\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}+\frac{9-x+2x-3\sqrt{x}}{x-5\sqrt{x}+6}\)

    =\(\frac{x-\sqrt{x}}{x-5\sqrt{x}+6}\)

8 tháng 11 2020

A=\(\frac{x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{1}{\sqrt{x}-2}+\frac{1}{\sqrt{x}+2}\)

=\(\frac{x+\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{x+2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

=\(\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{\sqrt{x}}{\sqrt{x-2}}\)

Vậy A=\(\frac{\sqrt{x}}{\sqrt{x}-2}\)vs x\(\ge0;x\ne4\)

9 tháng 11 2020

C=\(\left(\frac{1+x}{\sqrt{x}\left(\sqrt{x}+1\right)}\right)\times\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}}=\frac{1+x}{\sqrt{x}}\)

Vậy C=\(\frac{1+x}{\sqrt{x}}\)vs x>0