Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{\left(a-b\right)\left(\sqrt{a}-\sqrt{b}\right)-\left(\sqrt{a}-\sqrt{b}\right)^2\left(\sqrt{a}+\sqrt{b}\right)}{a-b}=\frac{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)^2\left(1-1\right)}{a-b}=0\)
a) \(M=\left(\sqrt{\frac{8}{3}}-\sqrt{34}+\sqrt{\frac{50}{3}}\right)\sqrt{6}\)
\(\Leftrightarrow M=\frac{\sqrt{8}}{\sqrt{3}}\cdot\sqrt{6}-\sqrt{34}\cdot\sqrt{6}+\frac{\sqrt{50}}{\sqrt{3}}\cdot\sqrt{6}\)
\(\Leftrightarrow M=\sqrt{16}-\sqrt{204}+\sqrt{25}\)
\(\Leftrightarrow M=4-\sqrt{204}+5\)
\(\Leftrightarrow M=9-\sqrt{204}\)
b) Hình như bạn chép sai đầu bài
a,
\(=\frac{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}{\sqrt{a}+\sqrt{b}}-\sqrt{ab}=a-2\sqrt{ab}+b=\left(\sqrt{a}-\sqrt{b}\right)^2\)
b,
A=\(=\frac{2\sqrt{3+\sqrt{5-\sqrt{13+2\sqrt{12}}}}}{\sqrt{6}+\sqrt{2}}=\frac{2\sqrt{3+\sqrt{5-\sqrt{\left(\sqrt{12}+1\right)^2}}}}{\sqrt{6}+\sqrt{2}}=\frac{2\sqrt{3+\sqrt{5-1-\sqrt{12}}}}{\sqrt{6}+\sqrt{2}}\)\(=\frac{2\sqrt{3+\sqrt{4-2\sqrt{3}}}}{\sqrt{6}+\sqrt{2}}=\frac{2\sqrt{3+\sqrt{\left(\sqrt{3}-1\right)^2}}}{\sqrt{6}+\sqrt{2}}=\frac{\sqrt{2}\sqrt{4+2\sqrt{3}}}{\sqrt{6}+\sqrt{2}}=\frac{\sqrt{6}+\sqrt{2}}{\sqrt{6}+\sqrt{2}}=1\)
B=
\(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(\sqrt{20}-3\right)^2}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}=\sqrt{\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}}=\sqrt{\sqrt{5}-\sqrt{5}+1}=1\)
\(ĐKXĐ:\hept{\begin{cases}a,b>0\\a\ne b\end{cases}}\)
\(\frac{\sqrt{a}-\sqrt{b}}{\sqrt{\sqrt{a}-\sqrt{b}}}=\frac{(\sqrt{\sqrt{a}-\sqrt{b}})^2}{\sqrt{\sqrt{a}-\sqrt{b}}}=\sqrt{\sqrt{a}-\sqrt{b}}\)
PT <=> \(=\frac{\left(\sqrt{\sqrt{a}-\sqrt{b}}\right)^2}{\sqrt{\sqrt{a}-\sqrt{b}}}\sqrt{\sqrt{a}-\sqrt{b}}\)