\(\frac{a}{\sqrt{ab}+b}+\frac{b}{\sqrt{ab}-b}+\frac{a-b}{\sqrt{ab}}\)

a) Rút...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 5 2019

ĐK: a>0,b>0,a\(\ne b\)

a) \(K=\left(\frac{\sqrt{a}}{\sqrt{ab}-b}+\frac{\sqrt{b}}{\sqrt{ab}-a}\right).\frac{\sqrt{a}+\sqrt{b}}{a\sqrt{b}-b\sqrt{a}}=\left(\frac{\sqrt{a}}{\sqrt{ab}-b}-\frac{\sqrt{b}}{a-\sqrt{ab}}\right).\frac{\sqrt{a}+\sqrt{b}}{a\sqrt{b}-b\sqrt{a}}=\left[\frac{a}{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}-\frac{b}{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}\right].\frac{\sqrt{a}+\sqrt{b}}{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}=\frac{\left(a-b\right)\left(\sqrt{a}+\sqrt{b}\right)}{ab\left(\sqrt{a}-\sqrt{b}\right)^2}=\frac{\left(\sqrt{a}+\sqrt{b}\right)^2\left(\sqrt{a}-\sqrt{b}\right)}{ab\left(\sqrt{a}-\sqrt{b}\right)^2}=\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{ab\left(\sqrt{a}-\sqrt{b}\right)}\)

b) Thay a=\(4+2\sqrt{3}\)\(b=4-2\sqrt{3}\) vào K thì \(K=\frac{\left(\sqrt{4+2\sqrt{3}}+\sqrt{4-2\sqrt{3}}\right)^2}{\left(4+2\sqrt{3}\right)\left(4-2\sqrt{3}\right)\left(\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}\right)}=\frac{\left[\sqrt{\left(\sqrt{3}+1\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}\right]^2}{\left(16-12\right)\left[\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}\right]}=\frac{\left(\sqrt{3}+1+\sqrt{3}-1\right)^2}{4.\left(\sqrt{3}+1-\sqrt{3}+1\right)}=\frac{\left(2\sqrt{3}\right)^2}{8}=\frac{12}{8}=\frac{3}{2}\)

3 tháng 8 2017

1. ĐK \(\hept{\begin{cases}x\ge0\\x\ne4\end{cases}}\)

a. Ta có \(R=\left(\frac{\sqrt{x}}{\sqrt{x}-2}-\frac{4}{\sqrt{x}\left(\sqrt{x}-2\right)}\right).\left(\frac{1}{\sqrt{x}+2}+\frac{4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right)\)

\(=\frac{x-4}{\sqrt{x}\left(\sqrt{x}-2\right)}.\frac{\sqrt{x}-2+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{\sqrt{x}+2}{\sqrt{x}}.\frac{\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

b. Với \(x=4+2\sqrt{3}\Rightarrow R=\frac{\sqrt{4+2\sqrt{3}}+2}{\sqrt{4+2\sqrt{3}}\left(\sqrt{4+2\sqrt{3}}-2\right)}=\frac{\sqrt{\left(\sqrt{3}+1\right)^2}+2}{\sqrt{\left(\sqrt{3}+1\right)^2}\left(\sqrt{\left(\sqrt{3}+1\right)^2}-2\right)}\)

\(=\frac{\sqrt{3}+1+2}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}=\frac{\sqrt{3}+3}{3-1}=\frac{\sqrt{3}+3}{2}\)

c. Để \(R>0\Rightarrow\frac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)}>0\Rightarrow\sqrt{x}-2>0\Rightarrow x>4\)

Vậy \(x>4\)thì \(R>0\)

2. Ta có \(A=6+2\sqrt{2}=6+\sqrt{8};B=9=6+3=6+\sqrt{9}\)

Vì \(\sqrt{8}< \sqrt{9}\Rightarrow A< B\)

3. a. \(VT=\frac{a+b-2\sqrt{ab}}{\sqrt{a}-\sqrt{b}}:\frac{1}{\sqrt{a}+\sqrt{b}}=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}.\left(\sqrt{a}+\sqrt{b}\right)\)

\(=\left(\sqrt{a}-\sqrt{b}\right).\left(\sqrt{a}+\sqrt{b}\right)=a-b=VP\left(đpcm\right)\)

b. Ta có \(VT=\left(2+\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right).\left(2-\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}\right)\)

\(=\left(2+\sqrt{a}\right)\left(2-\sqrt{a}\right)=4-a=VP\left(đpcm\right)\)