Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1,\(4\sqrt{5}+2\sqrt{5}-\sqrt{5}-15\sqrt{5}=-10\sqrt{5}\)
2,\(8\sqrt{5}-15\sqrt{5}+15\sqrt{5}-3\sqrt{5}=5\sqrt{5}\)
3,\(\left(28\sqrt{3}+9\sqrt{3}-4\sqrt{3}\right):\sqrt{3}=33\)
4,\(7\sqrt{7a}+3\sqrt{7a}-2\sqrt{7a}=8\sqrt{7a}\)
5,\(-6\sqrt{a}-\sqrt{6a}+\sqrt{6a}=-6\sqrt{a}\)
6,\(8\sqrt{3}-12\sqrt{3}+5\sqrt{3}+2\sqrt{3}=3\sqrt{3}\)
a: \(=6\sqrt{a}+\dfrac{1}{3}\sqrt{a}-3\sqrt{a}+\sqrt{7}=\dfrac{10}{3}\sqrt{a}+\sqrt{7}\)
b: \(=5a\cdot5b\sqrt{ab}+\sqrt{3}\cdot2\sqrt{3}\cdot ab\sqrt{ab}+9ab\cdot3\sqrt{ab}-5b\cdot9a\sqrt{ab}\)
\(=25ab\sqrt{ab}+12ab\sqrt{ab}+27ab\sqrt{ab}-45ab\sqrt{ab}\)
\(=19ab\sqrt{ab}\)
c: \(=\dfrac{\sqrt{ab}}{b}+\sqrt{ab}-\dfrac{a}{b}\cdot\dfrac{\sqrt{b}}{\sqrt{a}}\)
\(=\sqrt{ab}\left(\dfrac{1}{b}+1\right)-\dfrac{\sqrt{a}}{\sqrt{b}}\)
\(=\sqrt{ab}\)
d: \(=11\sqrt{5a}-5\sqrt{5a}+2\sqrt{5a}-12\sqrt{5a}+9\sqrt{a}\)
\(=-4\sqrt{5a}+9\sqrt{a}\)
Bài 1:
a) Sửa đề: \(\left(\sqrt{12}+3\sqrt{5}-4\sqrt{135}\right)\cdot\sqrt{3}\)
Ta có: \(\left(\sqrt{12}+3\sqrt{5}-4\sqrt{135}\right)\cdot\sqrt{3}\)
\(=\sqrt{12}\cdot\sqrt{3}+3\sqrt{5}\cdot\sqrt{3}-4\sqrt{135}\cdot\sqrt{3}\)
\(=6+3\sqrt{15}-36\sqrt{5}\)
b) Ta có: \(\sqrt{252}-\sqrt{700}+\sqrt{1008}-\sqrt{448}\)
\(=3\sqrt{28}-5\sqrt{28}+3\sqrt{112}-2\sqrt{112}\)
\(=-2\sqrt{28}+\sqrt{112}=-\sqrt{112}+\sqrt{112}=0\)
c) Ta có: \(2\sqrt{40\sqrt{12}}-2\sqrt{\sqrt{75}}-3\sqrt{5\sqrt{48}}\)
\(=2\cdot4\cdot\sqrt{5}\cdot\sqrt{\sqrt{3}}-2\cdot\sqrt{5}\cdot\sqrt{\sqrt{3}}-3\cdot2\cdot\sqrt{5}\cdot\sqrt{\sqrt{3}}\)
\(=8\sqrt{5}\cdot\sqrt{\sqrt{3}}-2\sqrt{5}\sqrt{\sqrt{3}}-6\sqrt{5}\sqrt{\sqrt{3}}\)
=0
Bài 2:
a) Ta có: \(A=\frac{\sqrt{6}+\sqrt{14}}{2\sqrt{3}+\sqrt{28}}\)
\(=\frac{\sqrt{2}\left(\sqrt{3}+\sqrt{7}\right)}{2\left(\sqrt{3}+\sqrt{7}\right)}\)
\(=\frac{1}{\sqrt{2}}\)
b) Ta có: \(B=\frac{9\sqrt{5}+3\sqrt{27}}{\sqrt{5}+\sqrt{3}}\)
\(=\frac{\sqrt{405}+\sqrt{243}}{\sqrt{5}+\sqrt{3}}\)
\(=\frac{9\left(\sqrt{5}+\sqrt{3}\right)}{\sqrt{5}+\sqrt{3}}=9\)
c) Ta có: \(C=\frac{3\sqrt{8}-2\sqrt{12}+\sqrt{20}}{3\sqrt{18}-2\sqrt{27}+\sqrt{45}}\)
\(=\frac{\sqrt{72}-\sqrt{48}+\sqrt{20}}{\sqrt{162}-\sqrt{108}+\sqrt{45}}\)
\(=\frac{2\left(\sqrt{18}-\sqrt{12}+\sqrt{5}\right)}{3\left(\sqrt{18}-\sqrt{12}+\sqrt{5}\right)}=\frac{2}{3}\)
1.\(=5\sqrt{2}-3\sqrt{2}+10\sqrt{2}-9\sqrt{2}=3\sqrt{2}\)
2.\(=5\sqrt{5}+4\sqrt{5}-9\sqrt{5}=0\)
a) \(3\sqrt{48}-2\sqrt{75}+5\sqrt{27}=3\sqrt{16.3}-2\sqrt{25.3}+5\sqrt{9.3}=3.4\sqrt{3}-2.5\sqrt{3}+5.3\sqrt{3}=12\sqrt{3}-10\sqrt{3}+15\sqrt{3}=17\sqrt{3}\)b) \(\left(\sqrt{x^3y}+\sqrt{xy^3}\right):\sqrt{xy}=\sqrt{xy}\left(\sqrt{x^2}+\sqrt{y^2}\right):\sqrt{xy}=\sqrt{x^2}+\sqrt{y^2}=\left|x\right|+\left|y\right|\)
2)
\(\sqrt{12,1.360}=\sqrt{12,1}.\sqrt{36}.\sqrt{10}\)
\(=\sqrt{12,1.36.10}\)
= \(\sqrt{121.36}\)
\(=\sqrt{4356}\)
\(=66\)
3)
\(\sqrt{5a}.\sqrt{45a}-3a\)
\(=\sqrt{5.45a^2}-3a\)
\(=\sqrt{225a^2}-3a\)
\(=\sqrt{\left(15a\right)^2}-3a\)
\(=-15a-3a\) ( vì \(a\le0\))
\(=-18a\)
5)
\(\sqrt{0,36a^2}\)
\(=\sqrt{\left(0,6a\right)^2}\)
\(=-0,6a\) ( vì \(a< 0\) )
Để tối mình rảnh lên coi có làm tiếp được nữa hông thì mình làm ha.
Chúc bạn học tốt!
1)
\(\sqrt{3a^3}.\sqrt{12}\)
\(=\sqrt{3}.\sqrt{a^3}.\sqrt{12}\)
\(=\sqrt{3.12}.\sqrt{a^3}\)
\(=6\sqrt{a^3}\)
4)
\(\left(3-a\right)^2-\sqrt{0,2}.\sqrt{180a^2}\)
\(=9.6a.a^2-\sqrt{0,2}.\sqrt{18}.\sqrt{10}.\sqrt{a^2}\)
\(=54a^3-\sqrt{2}.\sqrt{18}.\sqrt{a^2}\)
\(=34a^3-\sqrt{2.18}.\sqrt{a^2}\)
\(=54a^3-6\sqrt{a^2}\)
\(=54a^3-6a^2\) ( vì a<0)
6)
\(\sqrt{a^4.\left(3-a^{ }\right)^2}\)
\(=\sqrt{\left(a^2\right)^2.\left(3-a\right)^2}\)
\(=\sqrt{\left(a^2\right)^2}.\sqrt{\left(3-a\right)^2}\)
\(=\left|a^2\right|\left|3-a\right|\) ( vì a>3 => a>3 nên 3-a<0)
Mà\(\left|3-a\right|=-\left(-3-a\right)=-3+a=a-3\)
\(=a^2\left(a-3\right)\)
\(=a^3-3a^2\)
Còn lại bạn làm tương tự nha, trể quá rùi :)))))
a) Ta có: \(A=\sqrt{12}+2\sqrt{27}-3\sqrt{48}\)
\(=2\sqrt{3}+6\sqrt{3}-12\sqrt{3}\)
\(=-4\sqrt{3}\)
b) Ta có: \(C=\sqrt{20a}+4\sqrt{45a}-2\sqrt{125a}\)
\(=2\sqrt{5a}+12\sqrt{5a}-10\sqrt{5a}\)
\(=4\sqrt{5a}\)