K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2018

Bạn làm đc bài này chưa chỉ mình với

a: \(=6\sqrt{a}+\dfrac{1}{3}\sqrt{a}-3\sqrt{a}+\sqrt{7}=\dfrac{10}{3}\sqrt{a}+\sqrt{7}\)

b: \(=5a\cdot5b\sqrt{ab}+\sqrt{3}\cdot2\sqrt{3}\cdot ab\sqrt{ab}+9ab\cdot3\sqrt{ab}-5b\cdot9a\sqrt{ab}\)

\(=25ab\sqrt{ab}+12ab\sqrt{ab}+27ab\sqrt{ab}-45ab\sqrt{ab}\)

\(=19ab\sqrt{ab}\)

c: \(=\dfrac{\sqrt{ab}}{b}+\sqrt{ab}-\dfrac{a}{b}\cdot\dfrac{\sqrt{b}}{\sqrt{a}}\)

\(=\sqrt{ab}\left(\dfrac{1}{b}+1\right)-\dfrac{\sqrt{a}}{\sqrt{b}}\)

\(=\sqrt{ab}\)

d: \(=11\sqrt{5a}-5\sqrt{5a}+2\sqrt{5a}-12\sqrt{5a}+9\sqrt{a}\)

\(=-4\sqrt{5a}+9\sqrt{a}\)

7 tháng 8 2020

\(5a\sqrt{64ab^3}-\sqrt{3}\cdot\sqrt{12a^3b^3}+2ab\sqrt{9ab}-5b\sqrt{81a^3b}\\ =5a\cdot8b\sqrt{ab}-\sqrt{3\cdot12a^3b^3}+2ab\cdot3\sqrt{ab}-5b\cdot9a\sqrt{ab}\\ =40ab\sqrt{ab}-6ab\sqrt{ab}+6ab\sqrt{ab}-45ab\sqrt{ab}\\ =-5ab\sqrt{ab}\)

19 tháng 9 2018

giúp tớ với ^.^

19 tháng 9 2018

Góp ý chút. Cậu đăng tầm hai câu nhỏ một bài sẽ có nhiều người làm hơn đó.

20 tháng 5 2023

A ơi a chụp rõ hơn đc ko a

27 tháng 8 2021

a) \(\sqrt{4\left(a-3\right)^2}=2\left(a-3\right)=2a-6\)

b) \(\sqrt{a^2\left(a+1\right)^2}=a\left(a+1\right)=a^2+a\)

c) \(\sqrt{\dfrac{16a^4b^6}{128a^6b^6}}=\sqrt{\dfrac{1}{8a^2}}=\dfrac{1}{\sqrt{8}\left|a\right|}=\dfrac{1}{-\sqrt{8}a}=\dfrac{-\sqrt{8}}{8a}\)

a: \(\sqrt{4\left(a-3\right)^2}=2\cdot\left(a-3\right)=2a-6\)

b: \(\sqrt{a^2\left(a+1\right)^2}=a\left(a+1\right)=a^2+a\)

c: \(\dfrac{\sqrt{16a^4b^6}}{\sqrt{128a^6b^6}}=\sqrt{\dfrac{16a^4b^6}{128a^6b^6}}=\sqrt{\dfrac{1}{8a^2}}=\sqrt{\dfrac{2}{16a^2}}=-\dfrac{\sqrt{2}}{4a}\)

 

a) Ta có: \(5\sqrt{a}-3\sqrt{25a^3}+2\sqrt{36ab^2}-2\sqrt{9a}\)

\(=5\sqrt{a}-15a\sqrt{a}+12b\sqrt{a}-6\sqrt{a}\)

\(=-\sqrt{a}-15a\sqrt{a}+12\sqrt{a}b\)

b) Ta có: \(\sqrt{64ab^3}-3\sqrt{12a^3b^3}+2ab\sqrt{9ab}-5b\sqrt{81a^3b}\)

\(=8b\sqrt{a}-6ab\sqrt{3ab}+6ab\sqrt{ab}-45a^2b\sqrt{ab}\)

9 tháng 7 2021

a)\(5\sqrt{a}-3\sqrt{25a^3}+2\sqrt{36ab^2}-2\sqrt{9a}=5\sqrt{a}-15\left|a\right|\sqrt{a}+12\left|b\right|\sqrt{a}-6\sqrt{a}=-\sqrt{a}-15a\sqrt{a}+12b\sqrt{a}\)

b)\(\sqrt{64ab^3}-3\sqrt{12a^3b^3}+2ab\sqrt{9ab}-5b\sqrt{81a^3b}\)

\(=8\left|b\right|\sqrt{ab}-6\left|ab\right|\sqrt{3ab}+6ab\sqrt{ab}-45b\left|a\right|\sqrt{ab}\)

\(=8b\sqrt{ab}-6ab\sqrt{3ab}+6ab\sqrt{ab}-45ab\sqrt{ab}\)

\(=8b\sqrt{ab}-6ab\sqrt{3ab}-39ab\sqrt{ab}\)

22 tháng 4 2017

a) \(a-\sqrt{a}\)

b) \(-5ab\sqrt{ab}\)

31 tháng 7 2017

a) Ta có:

\(5\sqrt{a}-4b\sqrt{25a^3}+5a\sqrt{16ab^2}-2\sqrt{9a}\)

\(=5\sqrt{a}-4b.5a\sqrt{a}+5a.4b\sqrt{a}-2.3\sqrt{a}\)

\(=5\sqrt{a}-20ab\sqrt{a}+20ab\sqrt{a}-6\sqrt{a}\) \(=-\sqrt{a}\)

b) Ta có:

\(5a\sqrt{64ab^3}-\sqrt{3}.\sqrt{12a^3b^3}+2ab\sqrt{9ab}\) \(-5b\sqrt{81a^3b}\)

\(=5a.8b\sqrt{ab}-\sqrt{3.12a^3b^3}+2ab.3\sqrt{ab}\) \(-5b.9a\sqrt{ab}\)

\(=40ab\sqrt{ab}-6ab\sqrt{ab}+6ab\sqrt{ab}-45ab\)\(\sqrt{ab}\)

\(=-5ab\sqrt{ab}\)

a: \(=4\left|a-3\right|=4\left(a-3\right)=4a-12\)

b: \(=9\cdot\left|a-9\right|=9\left(9-a\right)=81-9a\)

c: \(a^3b^6\cdot\sqrt{\dfrac{3}{a^6b^4}}=a^3b^6\cdot\dfrac{\sqrt{3}}{-a^3b^2}=-b^4\sqrt{3}\)

d: \(=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}{a-b}\)

\(=\dfrac{a+\sqrt{ab}+b}{\sqrt{a}+\sqrt{b}}\)

1 tháng 8 2018

Bài 1:

a. ta có \(\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2\)

= \(\dfrac{\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)}{\sqrt{x}+\sqrt{y}}-x+2\sqrt{xy}-y\)

= \(x-\sqrt{xy}+y-x+2\sqrt{xy}-y\)

=\(\sqrt{xy}\)

b.ĐK: x ≠ 1

Ta có: A= \(\sqrt{\dfrac{x+2\sqrt{x}+1}{x-2\sqrt{x}+1}}\)=\(\sqrt{\dfrac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)^2}}\)=\(\dfrac{\sqrt{x}+1}{\left|\sqrt{x}-1\right|}\)

*Nếu \(\sqrt{x}-1\ge0\Rightarrow\sqrt{x}\ge1\)

⇒ A = \(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)

*Nếu \(\sqrt{x}-1< 0\Rightarrow\sqrt{x}< 1\)

⇒ A=\(\dfrac{\sqrt{x}+1}{-\sqrt{x}+1}\)

c.Ta có: