\(\sqrt{\frac{2a}{3}}.\sqrt{\frac{3a}{8}}vớia\ge0\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2017

1.\(5\sqrt{a}+6\sqrt{a.\frac{1}{4}}-\sqrt{a^2.\frac{4}{a}}+\sqrt{5}=5\sqrt{a}+6.\frac{1}{2}\sqrt{a}-2\sqrt{a}\)+\(\sqrt{5}\)

bạn tự làm nốt các câu này và làm tương tự các câu kia nhé!!Nếu khó chỗ nào hãy nhắn tin cho mk!! hihi

10 tháng 7 2017

Thanks

2 tháng 7 2017

B3: \(\sqrt{x^4-4x^3+2x^2+4x+1}=3x-1\)

\(pt\Leftrightarrow x^4-4x^3+2x^2+4x+1=\left(3x-1\right)^2\)

\(\Leftrightarrow x^4-4x^3+2x^2+4x+1=9x^2-6x+1\)

\(\Leftrightarrow x^4-4x^3-7x^2+10x=0\)

\(\Leftrightarrow x\left(x^3-4x^2-7x+10\right)=0\)

\(\Leftrightarrow x\left(x-1\right)\left(x-5\right)\left(x+2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=1\\x=5\end{cases}}\) (thỏa mãn (mấy cái kia loại hết))

21 tháng 7 2017

1.

ĐK \(a\ge0;a\ne1\)

Ta có \(A=\left(\frac{\sqrt{a}+1}{\sqrt{a}-1}-\frac{\sqrt{a}-1}{\sqrt{a}+1}+4\sqrt{a}\right).\left(\sqrt{a}-\frac{1}{\sqrt{a}}\right)\)

\(=\frac{\left(\sqrt{a}+1\right)^2-\left(\sqrt{a}-1\right)^2+4\sqrt{a}\left(a-1\right)}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}.\frac{a-1}{\sqrt{a}}\)

\(=\frac{a+2\sqrt{a}+1-a+2\sqrt{a}-1+4a\sqrt{a}-4\sqrt{a}}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}.\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\sqrt{a}}\)

\(=\frac{4a\sqrt{a}}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}.\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\sqrt{a}}=4a\)

2. Với \(a=\frac{\sqrt{6}}{2+\sqrt{6}}\Rightarrow A=\frac{4\sqrt{6}}{2+\sqrt{6}}\)

Để \(\sqrt{A}>A\Rightarrow\sqrt{4a}>4a\Rightarrow2\sqrt{a}-4a>0\Rightarrow2\sqrt{a}\left(1-2\sqrt{a}\right)>0\)

\(\Rightarrow\hept{\begin{cases}\sqrt{a}>0\\1-2\sqrt{a}>0\end{cases}\Rightarrow\hept{\begin{cases}a>0\\a>\frac{1}{4}\end{cases}\Rightarrow}a>\frac{1}{4}}\)

Vậy để \(\sqrt{A}>A\)thì \(a>\frac{1}{4};a\ne1\)

13 tháng 9 2019

ĐK: \(x\ge-7\)

PT \(\Leftrightarrow\left(\sqrt[3]{x-8}-\left(x-8\right)\right)+\left[\sqrt{x+7}-4\right]+\left(x-9\right)\left(x^2+x+2\right)=0\)

\(\Leftrightarrow\frac{-\left(x-9\right)\left(x-7\right)\left(x-8\right)}{\left(\sqrt[3]{x-8}\right)^2+\left(x-8\right)\sqrt[3]{x-8}+\left(x-8\right)^2}+\frac{x-9}{\sqrt{x+7}+4}+\left(x-9\right)\left(x^2+x+2\right)=0\)

\(\Leftrightarrow\left(x-9\right)\left[x^2+x+2+\frac{1}{\sqrt{x+7}+4}-\frac{\left(x-7\right)\left(x-8\right)}{\left(\sqrt[3]{x-8}\right)^2+\left(x-8\right)\sqrt[3]{x-8}+\left(x-8\right)^2}\right]=0\)

\(\Leftrightarrow x=9\) 

P/s:em chả biết đánh giá cái ngoặc to thế nào nữa:((((

21 tháng 9 2017

\(\left(\sqrt{12}+2\sqrt{27}-\sqrt{3}\right):\sqrt{3}\)

\(=\sqrt{12}:\sqrt{3}+2\sqrt{27}:\sqrt{3}-\sqrt{3}:\sqrt{3}\)

\(=\sqrt{4}+2\sqrt{9}-1\)

\(=2+6-1\)

\(=7\)

21 tháng 9 2017

2) \(\left(4\sqrt{2}-\sqrt{8}+2\right).\sqrt{2-\sqrt{8}}\)

\(=\left(4\sqrt{2}-2\sqrt{2}+2\right).\sqrt{2-2\sqrt{2}}\)

\(=\left(2\sqrt{2}+2\right)^2.\left(\sqrt{2-2\sqrt{2}}\right)^2\)

\(=\left(8+4\right)\left(2-2\sqrt{2}\right)\)

\(=12.\left(2-2\sqrt{2}\right)\)

\(=24-24\sqrt{2}\)

\(=24\left(1-\sqrt{2}\right)\)

3) \(\sqrt{3}\left(2\sqrt{27}-\sqrt{75}+\frac{3}{2}\sqrt{12}\right)\)

\(=\sqrt{3}\left(2\sqrt{3^2.3}-\sqrt{5^2.3}+\frac{3}{2}\sqrt{2^2.3}\right)\)

\(=\sqrt{3}\left(6\sqrt{3}-5\sqrt{3}+3\sqrt{3}\right)\)

\(=\sqrt{3}.4\sqrt{3}\)

\(=12\)

8 tháng 10 2019

2.\(\sqrt{9x}-5\sqrt{x}=6-4\sqrt{x}\)

\(\Leftrightarrow3\sqrt{x}-5\sqrt{x}=6-4\sqrt{x}\)

\(\Leftrightarrow3\sqrt{x}-5\sqrt{x}+4\sqrt{x}=6\)

\(\Leftrightarrow2\sqrt{x}=6\)

\(\Leftrightarrow\sqrt{x}=\frac{6}{2}\)

\(\Leftrightarrow\sqrt{x}=3\)

\(\Leftrightarrow\left(\sqrt{x}\right)^2=\left(3\right)^2\)

\(\Leftrightarrow x=9\)

vậy x=9 

mình chỉ giúp bạn được vậy thui :)

chúc bạn học tốt nha:)))