K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2017

1.\(5\sqrt{a}+6\sqrt{a.\frac{1}{4}}-\sqrt{a^2.\frac{4}{a}}+\sqrt{5}=5\sqrt{a}+6.\frac{1}{2}\sqrt{a}-2\sqrt{a}\)+\(\sqrt{5}\)

bạn tự làm nốt các câu này và làm tương tự các câu kia nhé!!Nếu khó chỗ nào hãy nhắn tin cho mk!! hihi

10 tháng 7 2017

Thanks

11 tháng 10 2018

Đề là Rút gọn biểu thức nha

26 tháng 9 2017

ko sao đâu

NV
9 tháng 10 2019

\(=2\sqrt{a}-\frac{5}{a}.3a\sqrt{a}+\frac{2a\sqrt{a}}{a}-\frac{2}{a^2}.5a^2\sqrt{a}\)

\(=2\sqrt{a}-15\sqrt{a}+2\sqrt{a}-10\sqrt{a}\)

\(=-21\sqrt{a}\)

7 tháng 12 2016

Mình sữa đề 1 chút nha

\(5\sqrt{a}-4b\sqrt{25a^3}+5a\sqrt{16ab^2}-2\sqrt{9a}\)

\(=5\sqrt{a}-20ab\sqrt{a}+20ab\sqrt{a}-6\sqrt{a}\)

\(=-\sqrt{a}\)

7 tháng 9 2019

toi biet nhung ko nho

31 tháng 10 2016

a/ Điều kiện \(\hept{\begin{cases}a\ge0\\a\ne\frac{1}{9}\end{cases}}\) \(\Rightarrow0\le a\ne\frac{1}{9}\)

b/ \(M=\left(\frac{2\sqrt{a}}{3\sqrt{a}+1}+\frac{\sqrt{a}-2}{1-3\sqrt{a}}-\frac{5\sqrt{a}+3}{9a-1}\right):\left(a-\frac{2\sqrt{a}-6}{3\sqrt{a}-1}\right)\)

\(=\frac{2\sqrt{a}\left(1-3\sqrt{a}\right)+\left(\sqrt{a}-2\right)\left(1+3\sqrt{a}\right)+5\sqrt{a}+3}{\left(1-3\sqrt{a}\right)\left(1+3\sqrt{a}\right)}:\left(\frac{3a\sqrt{a}-2\sqrt{a}+6-a}{3\sqrt{a}-1}\right)\)

\(=\frac{2\sqrt{a}-6a+\sqrt{a}+3a-2-6\sqrt{a}+5\sqrt{a}+3}{\left(1-3\sqrt{a}\right)\left(1+3\sqrt{a}\right)}.\left(\frac{3\sqrt{a}-1}{3a\sqrt{a}-2\sqrt{a}+6-a}\right)\)

\(=\frac{3a-2\sqrt{a}-1}{1+3\sqrt{a}}.\frac{1}{3a\sqrt{a}-2\sqrt{a}+6-a}\)

\(=\frac{\left(3\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{1+3\sqrt{a}}.\frac{1}{3a\sqrt{a}-2\sqrt{a}+6-a}\)

\(=\frac{\sqrt{a}-1}{3a\sqrt{a}-2\sqrt{a}+6-a}\)

Hình như đề sai rồi bạn :(

1 tháng 11 2016

a/ Điều kiện xác định : \(\hept{\begin{cases}a\ge0\\a\ne9\end{cases}\Leftrightarrow}0\le a\ne9\)

b/ \(M=\left(\frac{2\sqrt{a}}{3\sqrt{a}+1}+\frac{\sqrt{a}-2}{1-3\sqrt{a}}-\frac{5\sqrt{a}+3}{9a-1}\right):\left(1-\frac{2\sqrt{a}-6}{3\sqrt{a}-1}\right)\)

\(=\frac{2\sqrt{a}\left(3\sqrt{a}-1\right)+\left(2-\sqrt{a}\right)\left(3\sqrt{a}+1\right)-5\sqrt{a}-3}{\left(3\sqrt{a}+1\right)\left(3\sqrt{a}-1\right)}:\frac{\sqrt{a}+5}{3\sqrt{a}-1}\)

\(=\frac{6a-2\sqrt{a}+6\sqrt{a}+2-3a-\sqrt{a}-5\sqrt{a}-3}{\left(3\sqrt{a}+1\right)\left(3\sqrt{a}-1\right)}.\frac{3\sqrt{a}-1}{\sqrt{a}+5}\)

\(=\frac{3a-2\sqrt{a}-1}{3\sqrt{a}+1}.\frac{1}{\sqrt{a}+5}\)

\(=\frac{\left(3\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\left(3\sqrt{a}+1\right)\left(\sqrt{a}+5\right)}=\frac{\sqrt{a}-1}{\sqrt{a}+5}\)

c/ \(a=9-4\sqrt{5}=\left(\sqrt{5}-2\right)^2\) thay vào M được

\(\frac{\sqrt{5}-2-1}{\sqrt{5}-2+5}=\frac{\sqrt{5}-3}{\sqrt{5}+3}=\frac{-7+3\sqrt{5}}{2}\)

d/ \(M=\frac{\sqrt{a}-1}{\sqrt{a}+5}=\frac{\sqrt{a}+5-6}{\sqrt{a}+5}=1-\frac{6}{\sqrt{a}+5}\)

Với mọi \(0\le a\ne9\) thì ta luôn có \(\sqrt{a}+5\ge5\Leftrightarrow\frac{6}{\sqrt{a}+5}\le\frac{6}{5}\Leftrightarrow-\frac{6}{\sqrt{a}+5}\ge-\frac{6}{5}\Leftrightarrow1-\frac{6}{\sqrt{a}+5}\ge1-\frac{6}{5}\)

\(\Rightarrow M\ge-\frac{1}{5}\)

Đẳng thức xảy ra khi a = 0

Vậy giá trị nhỏ nhất của M bằng \(-\frac{1}{5}\) khi a = 0

11 tháng 7 2018

Bài 1:

a)  \(\frac{2}{\sqrt{3}-1}-\frac{2}{\sqrt{3}+1}\)

\(=\frac{2\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}-\frac{2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}\)

\(=\frac{2\left(\sqrt{3}+1\right)}{2}-\frac{2\left(\sqrt{3}-1\right)}{2}\)

\(=\sqrt{3}+1-\left(\sqrt{3}-1\right)=2\)

b)   \(\frac{2}{5-\sqrt{3}}+\frac{3}{\sqrt{6}+\sqrt{3}}\)

\(=\frac{2\left(5+\sqrt{3}\right)}{\left(5-\sqrt{3}\right)\left(5+\sqrt{3}\right)}+\frac{3\left(\sqrt{6}-\sqrt{3}\right)}{\left(\sqrt{6}+\sqrt{3}\right)\left(\sqrt{6}-\sqrt{3}\right)}\)

\(=\frac{2\left(5+\sqrt{3}\right)}{2}+\frac{3\left(\sqrt{6}-\sqrt{3}\right)}{3}\)

\(=5+\sqrt{3}+\sqrt{6}-\sqrt{3}=5+\sqrt{6}\)

c)  ĐK:  \(a\ge0;a\ne1\)

  \(\left(1+\frac{a+\sqrt{a}}{1+\sqrt{a}}\right).\left(1-\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)+a\)

\(=\left(1+\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{1+\sqrt{a}}\right).\left(1-\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)+a\)

\(=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)+a\)

\(=1-a+a=1\)