Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\frac{2}{x-1}+\frac{1}{\sqrt{x-1}}+\frac{1}{\sqrt{x}+1}\)
\(P=\frac{2}{ \left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(P=\frac{2+2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(P=\frac{2\left(1+\sqrt{x}\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(P=\frac{2}{\sqrt{x}-1}\)
a) \(P\)\(=\sqrt{x}-2+3-3\sqrt{x}=1-2\sqrt{x}\)
b) \(Q=\frac{2\left(1-2\sqrt{x}\right)}{1-1+2\sqrt{x}}=\frac{1-2\sqrt{x}}{\sqrt{x}}=\frac{1}{\sqrt{x}}-2\)
vậy x=1 thỏa mãn đề bài.
Trả lời :.............................
x=1...........................
Hk tốt..............................
Trả lời:
\(B=\left(\frac{\sqrt{x}}{\sqrt{x}+4}+\frac{4}{\sqrt{x}-4}\right):\frac{x+16}{\sqrt{x}+2}\left(ĐK:x\ge0;x\ne16\right)\)
\(=\frac{\sqrt{x}\left(\sqrt{x}-4\right)+4\left(\sqrt{x}+4\right)}{\left(\sqrt{x}+4\right)\left(\sqrt{x}-4\right)}\cdot\frac{\sqrt{x}+2}{x+16}\)
\(=\frac{x-4\sqrt{x}+4\sqrt{x}+16}{\left(\sqrt{x}+4\right)\left(\sqrt{x}-4\right)}\cdot\frac{\sqrt{x}+2}{x+16}\)
\(=\frac{x+16}{\left(\sqrt{x}+4\right)\left(\sqrt{x}-4\right)}\cdot\frac{\sqrt{x}+2}{x+16}=\frac{\sqrt{x}+2}{x-16}\)
a) ta có : \(\dfrac{x\sqrt{x}-y\sqrt{y}}{\sqrt{x}-\sqrt{y}}=\dfrac{\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}{\sqrt{x}-\sqrt{y}}=x+\sqrt{xy}+y\)
b) ta có : \(\dfrac{x-\sqrt{3x}+3}{x\sqrt{x}+3\sqrt{3}}=\dfrac{x-\sqrt{3x}+3}{\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{3x}+3\right)}=\dfrac{1}{\sqrt{x}+\sqrt{y}}\)
\(P=\dfrac{x\sqrt{x}-x-\sqrt{x}-2}{\left(x-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{\left(1-x^2\right)^2}{2}\)
\(P=\dfrac{\left(\sqrt{x}-2\right)\left(x-1\right)}{\left(x+\sqrt{x}+1\right)}.\dfrac{\left(1-x^2\right)\left(x-1\right)}{2}\)
\(P=\dfrac{\left(\sqrt{x}-2\right)\left(x-1\right)\left(1-x^2\right)}{2\left(x+\sqrt{x}+1\right)}\)
Trả lời:
\(\sqrt{x+2\sqrt{x}+1}\)\(\left(x\ge0\right)\)
\(=\sqrt{\left(\sqrt{x}+1\right)^2}\)
\(=\left|\sqrt{x}+1\right|\)
\(=\sqrt{x}+1\)