K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
10 tháng 10 2021

ta cos:

 undefined

10 tháng 10 2021

a) \(\left(x+2\right)^2-\left(x+3\right)\left(x-3\right)+10\)

\(=\left(x^2+4x+4\right)-\left(x^2-9\right)+10\)

\(=4x+23\)

b) \(\left(x+5\right)\left(x^2-5x+25\right)-x\left(x-4\right)^2+16x\)

\(=\left(x^3+125\right)-\left(x^3-8x^2+16x\right)+16x\)

\(=8x^2+125\)

13 tháng 6 2019

#)Giải :

a) x(2x2-3) - x2(5x+1) + x2

= 2x- 3x - 5x- x+ x2

= - 3x- 3x

16 tháng 8 2018

Bài 1:

  a) (3x-2).(4x+5)-6x.(2x-1) = 12x^2 +15x - 8x -10 - 12x^2 + 6x = 13x - 10

b) (2x-5)^2 - 4.(x+3).(x-3) = 4x^2 - 20x + 25 - 4x^2 + 12x -12x + 36 = -20x + 61

Bài 2:

a)(2x-1)^2-(x+3)^2 = 0

   <=> (2x-1-x-3).(2x-1+x+3) =0

   <=>(x-4).(3x+2) = 0

<=> x-4 = 0 hoặc 3x+2=0 

              *x-4=0    =>   x=4

              *3x+2 = 0     => 3x=-2   => x=-2/3

b)x^2(x-3)+12-4x=0       <=>     x^2(x-3) - 4(x-3) =0     <=>       (x-3).(x-2)(x+2)   <=> x-3=0 hoặc x-2=0  hoặc x+2 =0

                                                                                        *x-3=0  => x=3

                                                                                        *x-2=0    =>x=2

                                                                                        *x+2=0   =>x=-2

c)  6x^3 -24x =0  <=> 6x(x^2 -4)=0    <=> 6x(x-2)(x+2)=0    <=>  x=0 hoặc x-2 =0 hoặc x+2=0  <=> x=0 hoặc x=2  hoặc x=-2

16 tháng 5 2019

chú m lộn cak

mnjnnn 
  
  
4 tháng 9 2020

1) \(2x.\left(x-7\right)-\left(x+3\right)\left(x-2\right)-\left(x+4\right)\left(x-4\right)\)

\(=2x^2-14x-\left(x^2+x-6\right)-\left(x^2-4\right)\)

\(=-15x+10\)

b) \(2x.\left(x+1\right)^2-\left(x-1\right)^3-\left(x-2\right)\left(x^2+2x+4\right)\)

\(=2x.\left(x^2+2x+1\right)-\left(x^3-3x^2+3x-1\right)-\left(x^3-8\right)\)

\(=2x^3+4x^2+2x-x^3+3x^2-3x+1-x^3+8\)

\(=7x^2-x+9\)

c) \(\left(x-5\right)\left(x+5\right)\left(x+2\right)-\left(x+2\right)^3\)

\(=\left(x+2\right).\left[\left(x-5\right)\left(x+5\right)-\left(x+2\right)^2\right]\)

\(=\left(x+2\right).\left(x^2-25-x^2-4x-4\right)\)

\(=\left(x+2\right)\left(-4x-29\right)\)

\(=-4x^2-37x-58\)

d) \(\left(x-3\right)^3+\left(x-5\right)\left(x^2+5x+25\right)-\left(x-1\right)\left(x^2+x+1\right)\)

\(=x^3-9x^2+27x-27+\left(x^3-125\right)-\left(x^3-1\right)\)

\(=x^3-9x^2+27x-151\)

e) \(\left(x-1\right)^3-\left(x-2\right)\left(x^2-2x+4\right)+3x^2+2x\)

\(=x^3-3x^2+3x-1-\left(x^3-8\right)+3x^2+2x\)

\(=5x+7\)

4 tháng 9 2020

Nhẩm ấy, ko nháp âu 

\(2x\left(x-7\right)-\left(x+3\right)\left(x-2\right)-\left(x+4\right)\left(x-4\right)\)

\(=2x^2-14x-\left(x^2-2x+3x-6\right)-\left(x^2-4x+4x-16\right)\)

\(=2x^2-14x-x^2+x-6-x^2+16\)

\(=-13x-10\)

\(2x\left(x+1\right)^2-\left(x-1\right)^3-\left(x-2\right)\left(x^2+2x+4\right)\)

\(=2x\left(x^2+2x+1\right)-\left(x^3-3x^2+3x-1\right)-\left(x-2\right)\left(x+2\right)\)

\(-2x^3+4x^2+2x-x^3+3x^2-3x+1-x^2+4\)

\(=-3x^3+6x^2-x+5\)

24 tháng 6 2019

\(A=x^2-6x+10=x^2-2.3x+3^2+1=\left(x-3\right)^2+1\)

Ta có: \(\left(x-3\right)^2\ge0\) nên \(\left(x-3\right)^2+1\ge1\)

Vậy \(A_{min}=1\)(Dấu "="\(\Leftrightarrow x=3\))

24 tháng 6 2019

a) \(\left(x+1\right)^3-x^2\left(x+3\right)=2\)

\(\Leftrightarrow\left(x^3+3x^2+3x+1\right)-\left(x^3+3x^2\right)=2\)

\(\Leftrightarrow x^3+3x^2+3x+1-x^3-3x^2=2\)

\(\Leftrightarrow3x+1=2\)

\(\Leftrightarrow3x=1\)

\(\Leftrightarrow x=\frac{1}{3}\)

7 tháng 9 2017
ở trong sách nào đó bạn
17 tháng 6 2018

4) 9×1^2+42×1+50=9+42+50=101

17 tháng 6 2018

\(1/\):Tính \(\left(x+y\right)^2\)biết : \(x-y=5,x.y=2\)

Giải:

Ta có: \(x-y=5\)

\(\Rightarrow x^2-2xy+y^2=25\)

\(\Rightarrow x^2+y^2=25+2xy=25+2.2=29\)

\(\left(x+y\right)^2=\left(x^2+y^2\right)+2xy=29+2.2=33\)