Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x^2+4x-21-x^2-4x+5=-16\\ B=-2\left(4x^2+20x+25\right)-\left(1-16x^2\right)\\ B=-8x^2-40x-50-1+16x^2=8x^2-40x-51\\ C=x^2\left(x^2-16\right)-\left(x^4-1\right)=x^4-16x^2-x^4+1=1-16x^2\\ D=x^3+1-\left(x^3-1\right)=2\\ E=x^3-3x^2+3x-1-x^3+1-9x^2+1=-12x^2+3x+1\)
\(a,=5x-10+2x+6=7x-4\\ b,=x^2+2x+1-x^2+3x+10=5x+11\\ c,=x^2-49-x^2+1=-48\\ d,\text{Đề có sai ko vậy?}\)
\(a,x^2+4x-21-x^2-4x+5=-16\\ b,=\left(x+8-x+2\right)^2=10^2=100\\ c,=x^2\left(x^2-16\right)-\left(x^4-1\right)\\ =x^4-16x^2-x^4+1=1-16x^2\\ d,=x^3+1-x^3+1=2\)
\(a,=x^2+4x-21-x^2-4x+5=-16\\ b,=\left(x+8-x+2\right)^2=10^2=100\\ c,=x^2\left(x^2-16\right)-\left(x^4-1\right)\\ =x^4-16x^2-x^4+1=1-16x^2\\ d,=x^3+1-x^3+1=2\)
a) 2x( x - 7 ) - ( x + 3 )( x - 2 ) - ( x + 4 )( x - 4 )
= 2x2 - 14x - ( x2 + x - 6 ) - ( x2 - 16 )
= 2x2 - 14x - x2 - x + 6 - x2 + 16
= 22 - 15x
b) ( 2x + 5 )( x - 2 ) - 3( x + 2 )2 + ( x + 1 )2
= 2x2 + x - 10 - 3( x2 + 4x + 4 ) + x2 + 2x + 1
= 3x2 + 3x - 9 - 3x2 - 12x - 12
= -9x - 21
c) ( x + 3 )( x - 3 ) - ( x + 5 )( x - 1 ) - ( x - 4 )2
= x2 - 9 - ( x2 + 4x - 5 ) - ( x2 - 8x + 16 )
= x2 - 9 - x2 - 4x + 5 - x2 + 8x - 16
= -x2 + 4x - 20
d) 2x( x + 1 )2 - ( x - 1 )3 - ( x - 2 )( x2 + 2x + 4 )
= 2x( x2 + 2x + 1 ) - ( x3 - 3x2 + 3x - 1 ) - ( x3 - 8 )
= 2x3 + 4x2 + 2x - x3 + 3x2 - 3x + 1 - x3 + 8
= 7x2 - x + 9
e) ( x + 5 )( x - 5 )( x + 2 ) - ( x + 2 )3
= ( x2 - 25 )( x + 2 ) - ( x3 + 6x2 + 12x + 8 )
= x3 + 2x2 - 25x - 50 - x3 - 6x2 - 12x - 8
= -4x2 - 37x - 58
Với `x \ne -5,x \ne -1` có:
`A=[x+2]/[x+5]+[-5x-1]/[x^2+6x+5]-1/[1+x]`
`A=[(x+2)(x+1)-5x-1-(x+5)]/[(x+5)(x+1)]`
`A=[x^2+x+2x+2-5x-1-x-5]/[(x+5)(x+1)]`
`A=[x^2-3x-4]/[(x+5)(x+1)]`
`A=[(x-4)(x+1)]/[(x+5)(x+1)]`
`A=[x-4]/[x+5]`
\(=\dfrac{x+2}{x+5}+\dfrac{-5x-1}{x^2+x+5x+5}-\dfrac{1}{x+1}\\ =\dfrac{x+2}{x+5}+\dfrac{-5x-1}{\left(x^2+x\right)+\left(5x+5\right)}-\dfrac{1}{x+1}\\ =\dfrac{\left(x+2\right)\left(x+1\right)}{\left(x+1\right)\left(x+5\right)}+\dfrac{-5x-1}{x\left(x+1\right)+5\left(x+1\right)}-\dfrac{x+5}{\left(x+1\right)\left(x+5\right)}\\ =\dfrac{\left(x+2\right)\left(x+1\right)}{\left(x+1\right)\left(x+5\right)}+\dfrac{-5x-1}{\left(x+1\right)\left(x+5\right)}-\dfrac{x+5}{\left(x+1\right)\left(x+5\right)}\\ =\dfrac{x^2+2x+x+2-5x-1-x-5}{\left(x+1\right)\left(x+5\right)}\\ =\dfrac{x^2-3x-4}{\left(x+1\right)\left(x+5\right)}\\ =\dfrac{x^2+x-4x-4}{\left(x+1\right)\left(x+5\right)}\\ =\dfrac{\left(x^2+x\right)-\left(4x+4\right)}{\left(x+1\right)\left(x+5\right)}\\ =\dfrac{x\left(x+1\right)-4\left(x+1\right)}{\left(x+1\right)\left(x+5\right)}\\ =\dfrac{\left(x+1\right)\left(x-4\right)}{\left(x+1\right)\left(x+5\right)}\\ =\dfrac{x-4}{x+5}\)
1:
a: \(\left(2x-5\right)^2-4x\left(x+3\right)\)
\(=4x^2-20x+25-4x^2-12x\)
=-32x+25
b: \(\left(x-2\right)^3-6\left(x+4\right)\left(x-4\right)-\left(x-2\right)\left(x^2+2x+4\right)\)
\(=x^3-6x^2+12x-8-\left(x^3-8\right)-6\left(x^2-16\right)\)
\(=-6x^2+12x-6x^2+96=-12x^2+12x+96\)
c: \(\left(x-1\right)^2-2\left(x-1\right)\left(x+2\right)+\left(x+2\right)^2+5\left(2x-3\right)\)
\(=\left(x-1-x-2\right)^2+5\left(2x-3\right)\)
\(=\left(-3\right)^2+5\left(2x-3\right)\)
\(=9+10x-15=10x-6\)
2:
a: \(\left(2-3x\right)^2-5x\left(x-4\right)+4\left(x-1\right)\)
\(=9x^2-12x+4-5x^2+20x+4x-4\)
\(=4x^2+12x\)
b: \(\left(3-x\right)\left(x^2+3x+9\right)+\left(x-3\right)^3\)
\(=27-x^3+x^3-9x^2+27x-27\)
\(=-9x^2+27x\)
c: \(\left(x-4\right)^2\left(x+4\right)-\left(x-4\right)\left(x+4\right)^2+3\left(x^2-16\right)\)
\(=\left(x-4\right)\left(x+4\right)\left(x-4-x-4\right)+3\left(x^2-16\right)\)
\(=\left(x^2-16\right)\left(-8\right)+3\left(x^2-16\right)\)
\(=-5\left(x^2-16\right)=-5x^2+80\)
a) (3x + 1)^2 - 2(3x + 1)(3x - 5) + (3x - 5)^2
= 9x^2 + 6x + 1 - 18x^2 + 24x + 10 + 9x^2 - 30x + 25
= 36
b) (3x^2 - y)^2
= 9x^4 - 6x^2y + y^2
c) (3x + 5)^2 + (3x - 5)^2 - (3x + 2)(3x - 2)
= 9x^2 + 30x + 25 + 9x^2 - 30x + 25 - 9x^2 + 4
= 9x^2 + 54
d) 2x(2x - 1)^2 - 3x(x + 3)(x - 3) - 4x(x + 1)^2
= 8x^3 - 8x^2 + 2x - 3x^2 + 27x - 4x^3 - 8x^2 - 4x
= x^3 - 16x^2 + 25x
e) (x - 2)(x^2 + 2x + 4) - (x + 1)^2 + 3(x - 1)(x + 1)
= x^3 - 8 - x^2 - 2x - 1 + 3x^2 - 2
= x^3 + 2x^2 - 2x - 12
f) (x^4 - 5x^2 + 25)(x^2 + 5) - (2 + x^2)^2 + 3(1 + x^2)^2
= x^6 + 125 - 4 - 4x^2 - x^2 + 3 + 6x^2 + 3x^4
= x^6 + 2x^4 + 2x^2 + 124
Bài 1 :
a) \(ĐKXĐ:x\ne1\)
\(A=\left(\frac{3}{x^2-1}+\frac{1}{x+1}\right):\frac{1}{x+1}\)
\(\Leftrightarrow A=\frac{3+x-1}{\left(x-1\right)\left(x+1\right)}\cdot\left(x+1\right)\)
\(\Leftrightarrow A=\frac{x+2}{x-1}\)
b) Thay x = \(\frac{2}{5}\)vào A ta được :
\(A=\frac{\frac{2}{5}+2}{\frac{2}{5}-1}=\frac{\frac{12}{5}}{-\frac{3}{5}}=-4\)
c) Để \(A=\frac{5}{4}\)
\(\Leftrightarrow\frac{x+2}{x-1}=\frac{5}{4}\)
\(\Leftrightarrow4x+8=5x-5\)
\(\Leftrightarrow x=13\)
d) Để \(A>\frac{1}{2}\)
\(\Leftrightarrow\frac{x+2}{x-1}>\frac{1}{2}\)
\(\Leftrightarrow\frac{x+2}{x-1}-\frac{1}{2}>0\)
\(\Leftrightarrow2x+4-x+1>0\)
\(\Leftrightarrow x+5>0\)
\(\Leftrightarrow x>-5\)
Bài 2 :
a) \(ĐKXĐ:\hept{\begin{cases}x\ne-1\\x\ne0\end{cases}}\)
\(A=\frac{x^2}{x^2+x}-\frac{1-x}{x+1}\)
\(A=\frac{x}{x+1}+\frac{x-1}{x+1}\)
\(\Leftrightarrow A=\frac{2x-1}{x+1}\)
b) Để \(A=1\)
\(\Leftrightarrow\frac{2x-1}{x+1}=1\)
\(\Leftrightarrow2x-1=x+1\)
\(\Leftrightarrow x=2\)
b) Để \(A< 2\)
\(\Leftrightarrow\frac{2x-1}{x+1}< 2\)
\(\Leftrightarrow\frac{2x-1}{x+1}-2< 0\)
\(\Leftrightarrow2x-1-2x-1< 0\)
\(\Leftrightarrow-2< 0\)(luôn đúng)
Vậy A < 2 <=> mọi x
Chọn đáp án B