A. -1,4<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2017

\(x< -0,8\Rightarrow x+0,8< 0\Rightarrow\left|x+0,8\right|=-\left(x+0,8\right)\)

\(x< -0,8\Rightarrow x< 25\Rightarrow x-25< 0\Rightarrow\left|x-25\right|=25-x\)

\(\Rightarrow A=\left|x+0,8\right|-\left|x-25\right|+1,9=-\left(x+0,8\right)-\left(25-x\right)+1,9\)

\(=-x-0,8-25+x+1,9=-0,8-25+1,9=-23,9\)

27 tháng 9 2020

a) Vì \(\left|1,4-x\right|\ge0\forall x\)

\(\Rightarrow-\left|1,4-x\right|\le0\forall x\)\(\Rightarrow-\left|1,4-x\right|-2\le-2\forall x\)

Dấu " = " xảy ra \(\Leftrightarrow1,4-x=0\)\(\Leftrightarrow x=1,4\)

Vậy \(maxB=-2\)\(\Leftrightarrow x=1,4\)

b) \(D=\left|x-1\right|+\left|x-2\right|=\left|x-1\right|+\left|2-x\right|\)

\(\ge\left|x-1+2-x\right|=\left|1\right|=1\)

Dấu " = " xảy ra \(\Leftrightarrow\left(x-1\right)\left(2-x\right)\ge0\)

TH1: \(\hept{\begin{cases}x-1\le0\\2-x\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le1\\2\le x\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le1\\x\ge2\end{cases}}\)( vô lý )

TH2: \(\hept{\begin{cases}x-1\ge0\\2-x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge1\\2\ge x\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge1\\x\le2\end{cases}}\Leftrightarrow1\le x\le2\)

Vậy \(minD=1\)\(\Leftrightarrow1\le x\le2\)

17 tháng 6 2016

Bài 1 :

a) x < 0

b) x > 0

c) <=> 3 + |3x - 1| = 5

<=> |3x - 1| = 5 - 3 = 2

<=> 3x - 1 = 2 hoặc -3x + 1 = 2

<=> 3 x = 3 hoặc -3x = 1

<=> x = 1 hoặc x = -1/3

17 tháng 6 2016

Bài 2 :

a) 27 = 33 < 3n < 243 = 35

<=> 3 < n < 5

Vì n thuộc N* nên n thuộc {4; 5}

b) 32 = 25 < 2n < 128 = 27

<=> 5 < n < 7. Vì n thuộc N* nên n = 6

c) 125 = 5 . 25 = 5 . 52 < 5.5n < 5 . 125 = 5 . 53

<=> 2 < n < 3. Vì n thuộc N* nên n = 3

8 tháng 7 2020

Bài làm:

\(M=\left(12x^8+8x^2+6x-7\right)-\left(12x^8+2x-8\right)+\left(5-8x^2\right)\)

\(M=4x+6\)

8 tháng 7 2020

\(M=4x+6\)

Học tốt

1 tháng 11 2015

0

a: x<-0,8 nên x+0,8<0 và x<2,5

\(A=x+0.8+1.9-\left|x-2.5\right|=x+2.7-\left|x-2.5\right|\)

\(=x+2.7-\left(2.5-x\right)=2x+0.2\)

b: \(\dfrac{2}{3}\le x\le4.1\)

nên \(\left\{{}\begin{matrix}x-\dfrac{2}{3}>=0\\x-4.1< =0\end{matrix}\right.\)

\(B=4.1-x+x-\dfrac{2}{3}-9=-\dfrac{167}{30}\)

c: \(C=x+\left|x\right|\)

Trường hợp 1: x>=0

C=x+x=2x

Trường hợp 2: x<0

C=x-x=0

d: Trường hợp 1: x<0

D=-x-x=-2x

Trường hợp 2: x>=0

D=x-x=0

29 tháng 11 2017

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

b+c+d/a=c+d+a/b=d+a+b/c=a+b+c/d=3(a+b+c+d)/a+b+c+d=3

suy ra k=3

29 tháng 11 2017

taco:\(\dfrac{b+c+d}{a}=\dfrac{c+d+a}{b}+\dfrac{d+a+b}{c}=\dfrac{a+b+c}{d}=k\)=>\(\dfrac{b+c+d}{a}+1=\dfrac{c+d+a}{b}+1=\dfrac{a+b+d}{c}+1=\dfrac{a+b+c}{d}+1=k+1\)=>\(\dfrac{a+b+c+d}{a}=\dfrac{a+b+c+d}{b}=\dfrac{a+b+c+d}{c}=\dfrac{a+b+c+d}{d}=k+1=\dfrac{a+b+c+d+a+b+c+d+a+b+c+d}{a+b+c+d}=\dfrac{4.\left(a+b+c+d\right)}{a+b+c+d}=4\)

=>k+1=4

=>k=3