K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: x<-0,8 nên x+0,8<0 và x<2,5

\(A=x+0.8+1.9-\left|x-2.5\right|=x+2.7-\left|x-2.5\right|\)

\(=x+2.7-\left(2.5-x\right)=2x+0.2\)

b: \(\dfrac{2}{3}\le x\le4.1\)

nên \(\left\{{}\begin{matrix}x-\dfrac{2}{3}>=0\\x-4.1< =0\end{matrix}\right.\)

\(B=4.1-x+x-\dfrac{2}{3}-9=-\dfrac{167}{30}\)

c: \(C=x+\left|x\right|\)

Trường hợp 1: x>=0

C=x+x=2x

Trường hợp 2: x<0

C=x-x=0

d: Trường hợp 1: x<0

D=-x-x=-2x

Trường hợp 2: x>=0

D=x-x=0

Bài 1: 

1: \(M=\left|x-1\right|+x+2\)

Trường hợp 1: x>=1

M=x-1+x+2=2x+1

Trường hợp 2: x<1

M=1-x+x+2=3

2: \(N=x-3+\left|x-3\right|\)

Trường hợp 1: x>=3

\(N=x-3+x-3=2x-6\)

Trường hợp 2: x<3

\(N=x-3+3-x=0\)

3: \(P=2x-1-\left|x-2\right|\)

Trường hợp 1: x<2

\(P=2x-1-\left(2-x\right)=2x-1-2+x=3x-3\)

TRường hợp 2: x>=2

\(P=2x-1-x+2=x+1\)

24 tháng 7 2017

ĐKXĐ: \(x\ne5\)

a) \(\dfrac{7-x}{x-5}=\dfrac{1}{2}\)

\(\Leftrightarrow2\left(7-x\right)=x-5\)

\(\Leftrightarrow14-2x=x-5\)

\(\Leftrightarrow-2x-x=-5-14\)

\(\Leftrightarrow-3x=-19\)

\(\Leftrightarrow x=\dfrac{19}{3}\)

b, c) cách duy nhất mình biết là dùng Table :v

24 tháng 7 2017

câu b,c bn làm lun cho mk ik

12 tháng 3 2017

Đề sai bạn nhé. Đưa dữ kiện 3 ẩn bắt tính biểu thức chứa 2 ẩn làm sao làm được ?

Bạn kiểm tra lại nha

12 tháng 3 2017

xin lỗi z chứ ko phải là 2

3 tháng 8 2017

a) \(\left(x+\dfrac{1}{2}\right)+\left(x+\dfrac{1}{6}\right)+\left(x+\dfrac{1}{12}\right)+....+\left(x+\dfrac{1}{9900}\right)\)

\(\Leftrightarrow\left(x+x+x+...+x\right)+\left(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{9900}\right)=1\)

\(\Leftrightarrow50x+\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\right)=1\)

\(\Leftrightarrow50x+\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)=1\)

\(\Leftrightarrow50x+\left(1-\dfrac{1}{100}\right)=1\)

\(\Leftrightarrow50x+\dfrac{99}{100}=1\)

\(\Leftrightarrow50x=\dfrac{1}{100}\Rightarrow x=\dfrac{1}{5000}\)

b) \(A=\dfrac{3^2}{1.4}+\dfrac{3^2}{4.7}+\dfrac{3^2}{7.10}+...+\dfrac{3^2}{202.205}\)

\(A=\dfrac{3^2}{3}\cdot\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{202}-\dfrac{1}{205}\right)\)

\(A=\dfrac{9}{3}\cdot\left(1-\dfrac{1}{205}\right)\)

\(A=\dfrac{9}{3}\cdot\dfrac{204}{205}=\dfrac{615}{205}\)

3 tháng 8 2017

a) \(\left(x+\dfrac{1}{2}\right)+\left(x+\dfrac{1}{6}\right)+\left(x+\dfrac{1}{12}\right)+....+\left(x+\dfrac{1}{9900}\right)=1\)

\(\Leftrightarrow\left(x+x+x+...+x\right)+\left(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{9900}\right)=1\)

\(\Leftrightarrow\left(x+x+x+...+x\right)+\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\right)=1\)

Có tất cả : (99 - 1) : 1 + 1 = 99 (số x)

\(\Rightarrow99x+\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)=1\)

\(\Rightarrow99x+\left(1-\dfrac{1}{100}\right)=1\)

\(\Rightarrow99x+\dfrac{99}{100}=1\Rightarrow99x=1-\dfrac{99}{100}\)

\(\Rightarrow99x=\dfrac{1}{100}\Rightarrow x=\dfrac{1}{100.99}=\dfrac{1}{9900}\)

b) \(A=\dfrac{3^2}{1.4}+\dfrac{3^2}{4.7}+\dfrac{3^2}{7.10}+....+\dfrac{3^2}{202.205}\)

\(A=\dfrac{3^2}{3}\cdot\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{202}-\dfrac{1}{205}\right)\)

\(A=\dfrac{9}{3}\cdot\left(1-\dfrac{1}{205}\right)\)

\(A=3\cdot\dfrac{204}{205}=\dfrac{615}{205}\)

12 tháng 6 2017

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\dfrac{x}{y+x+t}=\dfrac{y}{z+t+x}=\dfrac{y}{t+x+y}=\dfrac{t}{x+y+z}=\dfrac{x+y+z+t}{3\left(x+y+z+t\right)}=\dfrac{1}{3}\)

\(\Rightarrow\left\{{}\begin{matrix}x+y+z=3t\\y+z+t=3x\\z+t+x=3y\\t+x+y=3z\end{matrix}\right.\)

\(\Rightarrow x=y=z=t\)

Thay vào P ta được :

\(P=1+1+1+1=4\)

12 tháng 6 2017

cảm ơn bn nhé!

29 tháng 9 2017

a) \(0,75:4,5=\dfrac{1}{15}:\left(2x\right)\)

\(\Rightarrow\) \(\dfrac{1}{6}=\dfrac{1}{30}:x\)

\(\Rightarrow\) \(x=\dfrac{1}{5}\)

29 tháng 9 2017

a. \(0,75:4,5=\dfrac{1}{15}:\left(2x\right)\)

\(\Leftrightarrow\dfrac{1}{15}:\left(2x\right)=0,75:4,5\)

\(\Rightarrow\dfrac{1}{15}:\left(2x\right)=\dfrac{1}{6}\)

\(\Rightarrow2x=\dfrac{1}{15}:\dfrac{1}{6}=\dfrac{2}{5}\)

\(\Rightarrow x=\dfrac{2}{5}:2=\dfrac{1}{5}\)

Vậy...

b. \(\dfrac{-5}{x-2}=\dfrac{3}{-9}\)

\(\Leftrightarrow\left(x-2\right).3=\left(-5\right).\left(-9\right)\)

\(\Rightarrow\left(x-2\right).3=45\)

\(\Rightarrow\left(x-2\right)=45:3=15\)

\(\Rightarrow x=15+2=17\)

Vậy...

c. \(\dfrac{-2}{3}:x=\dfrac{1}{2}:\dfrac{3}{4}\)

\(\Rightarrow\dfrac{-2}{3}:x=\dfrac{2}{3}\)

\(\Rightarrow x=\dfrac{-2}{3}:\dfrac{2}{3}=-1\)

Vậy...

16 tháng 11 2017

x,y tỉ lệ thuận với \(\dfrac{3}{4}\)\(\dfrac{4}{3}\)

\(\Rightarrow\dfrac{x}{\dfrac{3}{4}}=\dfrac{y}{\dfrac{4}{3}}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ,ta có :

\(\dfrac{x}{\dfrac{3}{4}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{x+y}{\dfrac{3}{4}+\dfrac{4}{3}}=-\dfrac{50}{\dfrac{25}{12}}=-24\)

\(\dfrac{x}{\dfrac{3}{4}}=-24\Rightarrow x=-18\)

\(\dfrac{y}{\dfrac{4}{3}}=-24\Rightarrow y=-32\)

16 tháng 11 2017

Vì x tỉ lệ thuận với \(\dfrac{3}{4}\)\(\Rightarrow x=\dfrac{3}{4}.k\)

Vì y tỉ lệ thuận với \(\dfrac{4}{3}\Rightarrow y=\dfrac{4}{3}.k\)

\(\Rightarrow x+y=\dfrac{3}{4}.k+\dfrac{4}{3}.k\)

Mà x+y=50

\(\Rightarrow\dfrac{3}{4}.k +\dfrac{4}{3}.k=-50\)

\(\Rightarrow\left(\dfrac{3}{4}+\dfrac{4}{3}\right).k=-50\)

\(\Rightarrow\dfrac{25}{12}.k=-50\)

\(\Rightarrow k=-50:\dfrac{25}{12}\)

\(\Rightarrow k=-24\)

\(\Rightarrow x=\dfrac{3}{4}.\left(-24\right)=-18\)

Tick mk nha!!!

\(y=\dfrac{4}{3}.\left(-24\right)=-32\)

Vậy \(x=-18,y=-32\)

29 tháng 6 2017

a) ĐKXĐ: x \(\ne\) \(\pm\)1

\(A=\dfrac{x^2+2x-3}{\left(x-1\right)\left(x+1\right)}\)

\(A=\dfrac{\left(x-1\right)\left(x+3\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{x+3}{x+1}\)

b) Khi x = -3

\(A=\dfrac{-3+3}{-3+1}=\dfrac{0}{-2}=0\)

c) Để A = 4

\(\Rightarrow\dfrac{x+3}{x+1}=4\)

\(x+3=4x+4\)

\(-3x=1\Rightarrow x=-\dfrac{1}{3}\)

d) Để A nguyên thì \(x+3\) \(⋮\) \(x+1\)

\(x+1+2⋮x+1\)

\(2⋮x+1\)

\(x+1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

Ta có bảng sau:

x+1 -1 1 -2 2
x -2 0 -1 ( loại ) 1 (loại )

Vậy để A nguyên thì x = -2 hoặc x = 0

( Loại trường hợp x = -1 và x = 1 do ĐKXĐ của x là x \(\ne\) \(\pm\)1

29 tháng 6 2017

a) điều kiện : \(x\ne\pm1\)

A = \(\dfrac{x^2+2x-3}{\left(x-1\right)\left(x+1\right)}\) = \(\dfrac{x^2-x+3x-3}{\left(x-1\right)\left(x+1\right)}\) = \(\dfrac{x\left(x-1\right)+3\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\)

\(\Leftrightarrow\) \(\dfrac{\left(x+3\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\) = \(\dfrac{x+3}{x+1}\)

b) thay \(x=-3\) vào đa thức ta có : \(\dfrac{-3+3}{-3+1}\) = \(\dfrac{0}{-2}=0\)

vậy \(x=-3\) thì \(A=0\)

c) \(A=4\) \(\Leftrightarrow\) \(\dfrac{x+3}{x+1}=4\) \(\Leftrightarrow\) \(x+3=4\left(x+1\right)\)

\(\Leftrightarrow\) \(x+3=4x+4\) \(\Leftrightarrow\) \(3x=-1\Leftrightarrow x=\dfrac{-1}{3}\)

A nguyên \(\Leftrightarrow\) \(\dfrac{x+3}{x+1}\) nguyên \(\Leftrightarrow\) \(x+3⋮x+1\)

\(x+3=x+1+2\) \(\Rightarrow\) \(2⋮x+1\)

vậy \(x+1\) là ước của 2 là \(\pm1\pm2\)

ta có : \(x+1=1\Rightarrow x=0\)

\(x+1=-1\Rightarrow x=-2\)

\(x+1=2\Rightarrow x=1\)

\(x+1=-2\Rightarrow x=-3\)

vậy \(x=0;x=-2;x=1;x=-3\) thì A nguyên