\(\sqrt{2x+4+6\sqrt{2x-5}}\) - \(\sqrt{2x-4-2\sqr...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2019

a) \(\sqrt{2x+4+6\sqrt{2x-5}}-\sqrt{2x-4-2\sqrt{2x-5}}\)

\(=\sqrt{2x-5+2\cdot\sqrt{2x-5}\cdot3+9}-\sqrt{2x-5-2\cdot\sqrt{2x-5}\cdot3+9}\)

\(=\sqrt{\left(\sqrt{2x-5}+3\right)^2}-\sqrt{\left(\sqrt{2x-5}-3\right)^2}\)

\(=\sqrt{2x-5}+3-\left|\sqrt{2x-5}-3\right|\)

b) \(\sqrt{a+6+6\sqrt{a-3}}+\sqrt{a+6-6\sqrt{a-3}}\)

\(=\sqrt{a-3+2\cdot\sqrt{a-3}\cdot3+9}+\sqrt{a-3-2\cdot\sqrt{a-3}\cdot3+9}\)

\(=\sqrt{\left(\sqrt{a-3}+3\right)^2}+\sqrt{\left(\sqrt{a-3}-3\right)^2}\)

\(=\sqrt{a-3}+3+\left|\sqrt{a-3}-3\right|\)

2 tháng 7 2019

a) + ĐK : \(x\ge\frac{5}{2}\)

\(A=\sqrt{2x-5+6\sqrt{2x-5}+9}-\sqrt{2x-5-2\sqrt{2x-5}+1}\)

\(=\sqrt{\left(\sqrt{2x-5}+3\right)^2}-\sqrt{\left(\sqrt{2x-5}-1\right)^2}\)

\(=\sqrt{2x-5}+3-\left|\sqrt{2x-5}-1\right|\)

+ TH1: \(x\ge3\) ta có :

\(A=\sqrt{2x-5}+3-\sqrt{2x-5}+1=4\)

+ TH2 : \(\frac{5}{2}\le x< 3\) ta có :

\(A=\sqrt{2x-5}+3+\sqrt{2x-5}-1\)

\(=2\sqrt{2x-5}+2\)

18 tháng 6 2018

2)a) \(\sqrt{17-12\sqrt{2}}-2\sqrt{2}\)

\(=\sqrt{\left(3-2\sqrt{2}\right)^2}-2\sqrt{2}\)

\(=\left|3-2\sqrt{2}\right|-2\sqrt{2}\)

\(=3-2\sqrt{2}-2\sqrt{2}\)

\(=3-4\sqrt{2}\)

b) \(\sqrt{15-6\sqrt{6}}+\sqrt{6}\)

\(=\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{6}\)

\(=\left|3-\sqrt{6}\right|+\sqrt{6}\)

\(=3-\sqrt{6}+\sqrt{6}\)

\(=3\)

19 tháng 6 2019

a.

\(A=\frac{1}{\sqrt{1}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{7}}+\frac{1}{\sqrt{7}+\sqrt{9}}\)

\(=\frac{\sqrt{3}-\sqrt{1}}{3-1}+\frac{\sqrt{5}-\sqrt{3}}{5-3}+\frac{\sqrt{7}-\sqrt{5}}{7-5}+\frac{\sqrt{9}-\sqrt{7}}{9-7}\)

\(=\frac{\sqrt{9}-\sqrt{7}+\sqrt{7}-\sqrt{5}+\sqrt{5}-\sqrt{3}+\sqrt{3}-\sqrt{1}}{2}\)

\(=\frac{3-1}{2}=1\)

b.

\(B=2\sqrt{40\sqrt{12}}-2\sqrt{\sqrt{75}}-3\sqrt{5\sqrt{48}}\)

\(=2\sqrt{80\sqrt{3}}-2\sqrt{5\sqrt{3}}-3\sqrt{20\sqrt{3}}\)

\(=8\sqrt{5\sqrt{3}}-2\sqrt{5\sqrt{3}}-6\sqrt{5\sqrt{3}}=0\)

c.

\(C=\frac{15}{\sqrt{6}+1}+\frac{4}{\sqrt{6}-2}-\frac{12}{3-\sqrt{6}}-\sqrt{6}\)

\(=\frac{15\sqrt{6}-15}{6-1}+\frac{4\sqrt{6}+8}{6-4}-\frac{36+12\sqrt{6}}{9-6}-\sqrt{6}\)

\(=\frac{15\sqrt{6}-15}{5}+\frac{4\sqrt{6}+8}{2}-\frac{36+12\sqrt{6}}{3}-\sqrt{6}\)

\(=3\sqrt{6}-3+2\sqrt{6}+4-12-4\sqrt{6}-\sqrt{6}\)

\(=-11\)

20 tháng 8 2019

d)D=\(\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-4}}\)( \(x\ge2\))

=\(\sqrt{x+2\sqrt{2}.\sqrt{x-2}}+\sqrt{x-2\sqrt{2}.\sqrt{x-2}}\)

=\(\sqrt{\left(x-2\right)+2\sqrt{2}.\sqrt{x-2}+2}+\sqrt{\left(x-2\right)-2\sqrt{2}.\sqrt{x-2}+2}\)

=\(\sqrt{\left(\sqrt{x-2}+\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{x-2}-\sqrt{2}\right)^2}\)

=\(\sqrt{x-2}+\sqrt{2}+\left|\sqrt{x-2}-\sqrt{2}\right|\)(1)

TH1: \(2\le x\le4\)

Từ (1)<=> \(\sqrt{x-2}+\sqrt{2}-\sqrt{x-2}+\sqrt{2}\)

=\(2\sqrt{2}\)

TH2. x\(>4\)

Từ (1) <=> \(\sqrt{x-2}+\sqrt{2}-\sqrt{2}+\sqrt{x-2}\)=\(2\sqrt{x-2}\)

Vậy \(\left[{}\begin{matrix}2\le x\le4\\x>4\end{matrix}\right.< =>\left[{}\begin{matrix}D=2\sqrt{2}\\D=2\sqrt{x-2}\end{matrix}\right.\)

15 tháng 10 2018

Bài 1:

a, Sai đề

b, \(\sqrt{x^2-4x+4}=x-2\)

\(\Leftrightarrow\sqrt{\left(x-2\right)^2}=x-2\)

\(\Leftrightarrow\left|x-2\right|=x-2\)(*)

TH1: \(x\ge2\Rightarrow\left|x-2\right|=x-2\)

(*)\(\Leftrightarrow x-2=x-2\)

\(\Leftrightarrow0x=0\)\(\Rightarrow\)PT có vô số nghiệm

TH2: \(x< 2\Rightarrow\left|x-2\right|=2-x\)

(*)\(\Leftrightarrow2-x=x-2\)

\(\Leftrightarrow-2x=-4\)

\(\Leftrightarrow x=2\)

Bài 2:

a, \(A=\sqrt{13+4\sqrt{10}}+\sqrt{13-4\sqrt{10}}\)

\(=\sqrt{\left(2\sqrt{2}+\sqrt{5}\right)^2}+\sqrt{\left(2\sqrt{2}-\sqrt{5}\right)^2}\)

\(=2\sqrt{2}+\sqrt{5}+2\sqrt{2}-\sqrt{5}\)

\(=2\sqrt{2}+2\sqrt{2}=4\sqrt{2}\)

b, \(B=\sqrt{2x+4+6\sqrt{2x-5}}+\sqrt{2x-4-2\sqrt{2x-5}}\)\(\left(x\ge\dfrac{5}{2}\right)\)

\(=\sqrt{2x-5+6\sqrt{2x-5}+9}+\sqrt{2x-5-2\sqrt{2x-5}+1}\)

\(=\sqrt{\left(\sqrt{2x-5}+3\right)^2}+\sqrt{\left(\sqrt{2x-5}-1\right)^2}\)

\(=\left|\sqrt{2x-5}+3\right|+\left|\sqrt{2x-5}-1\right|\)

\(=\sqrt{2x-5}+3+\sqrt{2x-5}-1\)

\(=2\sqrt{2x-5}+2\)

\(=2\left(\sqrt{2x-5}+1\right)\)

Sai thì nhớ báo nhé bạn.

16 tháng 10 2018

câu a là \(\sqrt{x-2}+x=3\)

NV
16 tháng 9 2019

Bài 1:

a/ ĐKXĐ: \(x\ge1\)

\(\Leftrightarrow\sqrt{x-1}-2+\sqrt{2x-1}-3=0\)

\(\Leftrightarrow\frac{x-5}{\sqrt{x-1}+2}+\frac{2\left(x-5\right)}{\sqrt{2x-1}+3}=0\)

\(\Leftrightarrow\left(x-5\right)\left(\frac{1}{\sqrt{x-1}+2}+\frac{2}{\sqrt{2x-1}+3}\right)=0\)

\(\Rightarrow x=5\)

b/ĐKXĐ:...

\(x-1+\sqrt{2x-1}-1=0\)

\(\Leftrightarrow x-1+\frac{2\left(x-1\right)}{\sqrt{2x-1}+1}=0\)

\(\Leftrightarrow\left(x-1\right)\left(1+\frac{2}{\sqrt{2x-1}+1}\right)=0\)

\(\Rightarrow x=1\)

NV
16 tháng 9 2019

Bài 2:

\(A=\sqrt{\left(2-\sqrt{3}\right)^2}-\sqrt{\left(2+\sqrt{3}\right)^2}\)

\(=\left|2-\sqrt{3}\right|-\left|2+\sqrt{3}\right|\)

\(=2-\sqrt{3}-2-\sqrt{3}=-2\sqrt{3}\)

\(B=\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(2\sqrt{6}-3\right)^2}\)

\(=\left(3-\sqrt{6}\right)+\left(2\sqrt{6}-3\right)\)

\(=\sqrt{6}\)

\(C=\left(\frac{3+\sqrt{5}-3+\sqrt{5}}{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}\right).\frac{\left(\sqrt{5}-1\right)}{\sqrt{5}\left(\sqrt{5}-1\right)}\)

\(=\frac{2\sqrt{5}}{4}.\frac{1}{\sqrt{5}}=\frac{1}{2}\)

16 tháng 9 2019

a) \(\sqrt{x-1}+\sqrt{2x-1}=5\)

\(\Leftrightarrow3x-2+2\sqrt{\left(x-1\right)\left(2x-1\right)}=25\)

\(\Leftrightarrow2\sqrt{\left(x-1\right)\left(2x-1\right)}=25-3x+2\)

\(\Leftrightarrow2\sqrt{\left(x-1\right)\left(2x-1\right)}=-3x+27\)

Bình phương 2 vế, ta được:

\(\Leftrightarrow4\left(x-1\right)\left(2x-1\right)=9\left(x-9\right)^2\)

\(\Leftrightarrow8x^2-4x-8x+4=9x^2-162x+729\)

\(\Leftrightarrow8x^2-12x+4-9x^2+162x-729=0\)

\(\Leftrightarrow-x^2+150x-725=0\)

\(\Leftrightarrow x^2-150x+725=0\)

\(\Leftrightarrow\left(x-145\right)\left(x-5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-145=0\\x-5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=145\left(ktm\right)\\x=5\left(tm\right)\end{cases}}\)

\(\Rightarrow x=5\)

b) \(x+\sqrt{2x-1}-2=0\)

\(\Leftrightarrow\sqrt{2x-1}=2-x\)

Bình phương 2 vế, ta được:

\(\Leftrightarrow2x-1=4-4x^2+x^2=0\)

\(\Leftrightarrow2x-1-4+4x-x^2=0\)

\(\Leftrightarrow6x-5-x^2=0\)

\(\Leftrightarrow\left(x-5\right)\left(x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=5\left(ktm\right)\\x=1\left(tm\right)\end{cases}}\)