Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(A=\frac{30\left(\sqrt{6}-1\right)}{5}+\frac{2\left(\sqrt{6}+2\right)}{2}-\frac{6\left(3+\sqrt{6}\right)}{3}=6\sqrt{6}-6+\sqrt{6}+2-6-2\sqrt{6}\)
\(A=5\sqrt{6}-10\)
\(B=\sqrt{17-6\sqrt{2}+\sqrt{8+4\sqrt{2}+1}}\)
\(B=\sqrt{17-6\sqrt{2}+\sqrt{\left(2\sqrt{2}+1\right)^2}}=\sqrt{18-4\sqrt{2}}\)
Đến đây ko rút gọn được nữa, nhưng nếu đề là:
\(B=\sqrt{17+6\sqrt{2}+\sqrt{8+4\sqrt{2}+1}}=\sqrt{18+8\sqrt{2}}=4+\sqrt{2}\)
c/
\(C=\sqrt{8-2\sqrt{7}}+\sqrt{8+2\sqrt{7}}=\sqrt{\left(\sqrt{7}-1\right)^2}+\sqrt{\left(\sqrt{7}+1\right)^2}\)
\(C=\sqrt{7}-1+\sqrt{7}+1=2\sqrt{7}\)
\(D=\sqrt{a-2\sqrt{a}+1}-\sqrt{a-8\sqrt{a}+16}\)
\(D=\sqrt{\left(\sqrt{a}-1\right)^2}-\sqrt{\left(4-\sqrt{a}\right)^2}=\sqrt{a}-1-\left(4-\sqrt{a}\right)=2\sqrt{a}-5\)
\(E=\sqrt{a-2+2\sqrt{a-2}+1}+\sqrt{a-2-2\sqrt{a-2}+1}\) (\(a\ge2\))
\(E=\sqrt{\left(\sqrt{a-2}+1\right)^2}+\sqrt{\left(\sqrt{a-2}-1\right)^2}\)
\(E=\sqrt{a-2}+1+\left|\sqrt{a-2}-1\right|\)
\(\Rightarrow\left[{}\begin{matrix}E=2\sqrt{a-2}\left(a\ge3\right)\\E=2\left(2\le a\le3\right)\end{matrix}\right.\)
\(F=\sqrt[3]{10+6\sqrt{3}}-\sqrt{3}=\sqrt[3]{1+3.1.\sqrt{3}+3.1.\sqrt{3}^2+\sqrt{3}^3}-\sqrt{3}\)
\(F=\sqrt[3]{\left(1+\sqrt{3}\right)^3}-\sqrt{3}=1+\sqrt{3}-\sqrt{3}=1\)
\(G=\sqrt[3]{7+5\sqrt{2}}+\sqrt[3]{7-5\sqrt{2}}\Rightarrow G^3=\left(\sqrt[3]{7+5\sqrt{2}}+\sqrt[3]{7-5\sqrt{2}}\right)^3\)
\(\Rightarrow G^3=14+3\left(\sqrt[3]{7+5\sqrt{2}}+\sqrt[3]{7-5\sqrt{2}}\right)\left(\sqrt[3]{49-50}\right)\)
\(\Rightarrow G^3=14-3G\Rightarrow G^3+3G-14=0\)
\(\Rightarrow G=2\)
2.1
\(A=\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}=\sqrt{5+2\sqrt{5.1}+1}-\sqrt{5-2\sqrt{5.1}+1}\)
\(=\sqrt{(\sqrt{5}+1)^2}-\sqrt{(\sqrt{5}-1)^2}=|\sqrt{5}+1|-|\sqrt{5}-1|=2\)
2.2
\(B\sqrt{2}=\sqrt{8+2\sqrt{15}}+\sqrt{8-2\sqrt{15}}-2\sqrt{6-2\sqrt{5}}\)
\(=\sqrt{3+2\sqrt{3.5}+5}+\sqrt{3-2\sqrt{3.5}+5}-2\sqrt{5-2\sqrt{5.1}+1}\)
\(=\sqrt{(\sqrt{3}+\sqrt{5})^2}+\sqrt{(\sqrt{3}-\sqrt{5})^2}-2\sqrt{(\sqrt{5}-1)^2}\)
\(=|\sqrt{3}+\sqrt{5}|+|\sqrt{3}-\sqrt{5}|-2|\sqrt{5}-1|=2\)
$\Rightarrow B=\sqrt{2}$
Bài 1:
1. ĐKXĐ: \(\left\{\begin{matrix} 2x-1\geq 0\\ x-3\geq 0\\ 5-x>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ x\geq 3\\ x< 5\end{matrix}\right.\Leftrightarrow 3\leq x< 5\)
2.
ĐKXĐ: \(\left\{\begin{matrix} x-1\geq 0\\ 2-x\geq 0\\ x+1>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 1\\ x\leq 2\\ x>-1\end{matrix}\right.\Leftrightarrow 1\leq x\leq 2\)
a) Ta có: \(\left(\sqrt{8}-3\sqrt{2}+\sqrt{10}\right)\sqrt{2}-\sqrt{5}\)
\(=\left(-\sqrt{2}+\sqrt{10}\right)\sqrt{2}-\sqrt{5}\)
\(=-2+2\sqrt{5}-\sqrt{5}\)
\(=-2+\sqrt{5}\)
b) \(\left(\frac{1}{2}\sqrt{\frac{1}{2}}-\frac{3}{2}\sqrt{2}+\frac{4}{5}\sqrt{200}\right)\div\frac{1}{8}\)
\(=\left(\frac{\sqrt{2}}{4}-\frac{3\sqrt{2}}{2}+8\sqrt{2}\right)\cdot8\)
\(=\frac{27\sqrt{2}}{4}\cdot8\)
\(=54\sqrt{2}\)