
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(2\sqrt[]{37+20\sqrt[]{3}}-\sqrt[]{73-40\sqrt[]{3}}\)
\(=2\sqrt[]{25+2.5.2\sqrt[]{3}+12}-\sqrt[]{48-2.5.4\sqrt[]{3}+25}\)
\(=2\sqrt[]{\left(5+2\sqrt[]{3}\right)^2}-\sqrt[]{\left(5-4\sqrt[]{3}\right)^2}\)
\(=2\left|5+2\sqrt[]{3}\right|-\left|5-4\sqrt[]{3}\right|\)
\(=2\left(5+2\sqrt[]{3}\right)-\left(4\sqrt[]{3}-5\right)\left(vì.4\sqrt[]{3}>5\right)\)
\(=10+4\sqrt[]{3}-4\sqrt[]{3}+5\)
\(=15\)

= \(\sqrt{12-2.2\sqrt{3}.5+25}-\sqrt{12+2.2\sqrt{3}.5+25}\)
= \(\sqrt{\left(2\sqrt{3}-5\right)^2}-\sqrt{\left(2\sqrt{3}+5\right)^2}\)
= \(|2\sqrt{3}-5|-2\sqrt{3}-5\)
=\(5-2\sqrt{3}-2\sqrt{3}-5=-4\sqrt{3}\)

\(A=\dfrac{1}{2-\sqrt{3}}+\dfrac{1}{2+\sqrt{3}}-\sqrt{37-20\sqrt{3}}\)
\(=\dfrac{2+\sqrt{3}}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}+\dfrac{2-\sqrt{3}}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}-\sqrt{\left(5-2\sqrt{3}\right)^2}\)
\(=2+\sqrt{3}+2-\sqrt{3}-5+2\sqrt{3}\)
\(=2\sqrt{3}-1\)

Bài 1 :
Ta có :
\(\sqrt{37-20\sqrt{3}}+\sqrt{37+20\sqrt{3}}=\sqrt{25-2.5.2\sqrt{3}+12}\)
\(+\sqrt{25+2.5.2\sqrt{3}+12}\)
\(=\sqrt{\left(5-2\sqrt{3}\right)^2}+\sqrt{\left(5+2\sqrt{3}\right)^2}\)
\(5-2\sqrt{3}+5+2\sqrt{3}\)
\(=5+5=10\)
Bài 2 :
Với x , y , z > 0 . Ta có :
+ ) \(\frac{x}{y}+\frac{y}{x}\ge2\left(1\right)\)
+ ) \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\left(2\right)\)
+ ) \(x^2+y^2+z^2\ge xy+yz+zx\Leftrightarrow\frac{x^2+y^2+z^2}{xy+yz+zx}\ge1\left(3\right)\)
Xảy ra đăng thức ở : \(\left(1\right),\left(2\right),\left(3\right)\Leftrightarrow x=y=z\) . Ta có :
\(P=\frac{ab+bc+ca}{a^2+b^2+c^2}+\left(a+b+c\right)^2.\frac{\left(a+b+c\right)}{abc}\)
\(=\frac{ab+bc+ca}{a^2+b^2+c^2}+\left(a^2+b^2+c^2+2ab+2bc+2ca\right).\frac{\left(a+b+c\right)}{abc}\)
Áp dụng các bất đẳng thức (1) , (2) , (3) ta được :
\(P\ge\frac{ab+bc+ca}{a^2+b^2+c^2}+\left(a^2+b^2+c^2\right).\frac{9}{ab+bc+ca}+2.9\)
\(=\left(\frac{ab+bc+ca}{a^2+b^2+c^2}+\frac{a^2+b^2+c^2}{ab+bc+ca}\right)+8.\frac{a^2+b^2+c^2}{ab+bc+ca}+18\)
\(\ge2+8+18=28\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}a^2+b^2+c^2=ab+bc+ca\\ab=bc=ca\end{cases}\Leftrightarrow a=b=c}\)

a: \(=2\sqrt{20\sqrt{3}}-2\sqrt{5\sqrt{3}}-3\cdot\sqrt{20\sqrt{3}}\)
\(=4\sqrt{5\sqrt{3}}-2\sqrt{5\sqrt{3}}-6\sqrt{5\sqrt{3}}=-4\sqrt{5\sqrt{3}}\)
b: \(=2\sqrt{5\sqrt{3}}-4\sqrt{2\sqrt{3}}-6\sqrt{5\sqrt{3}}=-4\sqrt{5\sqrt{3}}-4\sqrt{2\sqrt{3}}\)

a) \(2\sqrt{40\sqrt{12}}-2\sqrt{\sqrt{75}}-3\sqrt{5\sqrt{48}}\)
\(=2\sqrt{40.2\sqrt{3}}-2\sqrt{5\sqrt{3}}-3\sqrt{5.4\sqrt{3}}\)
\(=\left(2\sqrt{80}-2\sqrt{5}-3\sqrt{20}\right).\sqrt{\sqrt{3}}\)
\(=\left(8\sqrt{5}-2\sqrt{5}-6\sqrt{5}\right).\sqrt{\sqrt{3}}=0\)
b) \(2\sqrt{8\sqrt{3}}-2\sqrt{5\sqrt{3}}-3\sqrt{20\sqrt{3}}\)
\(=\left(4\sqrt{2}-2\sqrt{5}-6\sqrt{5}\right).\sqrt{\sqrt{3}}\)
\(=\left(4\sqrt{2}-8\sqrt{5}\right).\sqrt{\sqrt{3}}\)
\(=\sqrt{\sqrt{3}}\left(\sqrt{2}-2\sqrt{5}\right)\)
\(C=2\sqrt{37+20\sqrt{3}}-\sqrt{73-40\sqrt{3}}\)
\(=2\sqrt{\sqrt{12^2}+2.5\sqrt{12}+5^2}-\sqrt{\left(4\sqrt{3}\right)^2-2.5.4\sqrt{3}+5^2}\)
\(=2\sqrt{\left(\sqrt{12}+5\right)^2}-\sqrt{\left(4\sqrt{3}-5\right)^2}\)
\(=2.\left|\sqrt{12}+5\right|-\left|4\sqrt{3}-5\right|\)
\(=2.\left(\sqrt{12}+5\right)-\left(4\sqrt{3}-5\right)\)
\(=2\sqrt{12}+10-4\sqrt{3}+5\)
\(=4\sqrt{3}-4\sqrt{3}+10+5\)
\(=15\)
Vậy C = 15
`C=2\sqrt(37+20sqrt3)-sqrt(73-40sqrt3)`
`=2\sqrt((2sqrt3+5)^2)-\sqrt((4sqrt3-5)^2)`
`=2(2sqrt3+5)-(4sqrt3-5)`
`=4sqrt3+10-4sqrt3+5`
`=15`
----
Hằng đẳng thức: `A^2+-2AB+B^2=(A+-B)^2`
Khai căn: `sqrt(A^2)=|A|={(A\text(,nếu )A>=0),(-A\text(,nếu )A<0):}`