Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK:....
Đặt \(\sqrt{x+2010}=a\ge0\) thì \(a^2-x=2010\)
Kết hợp đề bài ta có hệ: \(\left\{{}\begin{matrix}x^2+a=2010\\a^2-x=2010\end{matrix}\right.\)
Trừ theo vế hai pt của hệ ta được:
\(\left(x^2-a^2\right)+\left(a+x\right)=0\)
\(\Leftrightarrow\left(x-a\right)\left(x+a\right)+\left(x+a\right)=0\)
\(\Leftrightarrow\left(x+a\right)\left(x-a+1\right)=0\)
Auto làm nốt. P/s: Em làm đúng ko ta?:V
Nhận thấy \(\left\{{}\begin{matrix}x=1\\x=2\end{matrix}\right.\) là 2 nghiệm của pt
- Với \(x< 1\Rightarrow2-x>1\Rightarrow\left(x-2\right)^{2010}=\left(2-x\right)^{2010}>1\)
Mà \(\left(x-1\right)^{2010}>0\Rightarrow VT>1\Rightarrow VT>VP\Rightarrow\) pt vô nghiệm
- Với \(x>2\Rightarrow\left\{{}\begin{matrix}\left(x-2\right)^{2010}>0\\x-1>1\Rightarrow\left(x-1\right)^{2010}>1\end{matrix}\right.\)
\(\Rightarrow VT>1\Rightarrow VT>VP\Rightarrow\) pt vô nghiệm
- Với \(1< x< 2\) viết lại pt dưới dạng: \(\left(x-1\right)^{2010}+\left(2-x\right)^{2010}=1\)
\(\Rightarrow\left\{{}\begin{matrix}0< x-1< 1\Rightarrow\left(x-1\right)^{2010}< x-1\\0< 2-x< 1\Rightarrow\left(2-x\right)^{2010}< 2-x\end{matrix}\right.\)
\(\Rightarrow\left(x-1\right)^{2010}+\left(2-x\right)^{2010}< x-1+2-x=1\)
\(\Rightarrow VT< 1\Rightarrow VT< VP\Rightarrow\) pt vô nghiệm
Vậy pt có 2 nghiệm \(\left\{{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
Đk:\(x\ge1\)
\(pt\Leftrightarrow3\left(x-2\right)\sqrt{x-1}\sqrt{x^2+x+1}+18\left(x-1\right)=x\left(x^2+x+1\right)\)
Chia 2 vế của pt cho \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)ta đc:
\(3\left(x-2\right)\frac{\sqrt{x-1}}{\sqrt{x^2+x+1}}+\frac{18\left(x-1\right)}{x^2+x+1}=x\)
Đặt \(y=\frac{\sqrt{x-1}}{\sqrt{x^2+x+1}}\left(y\ge0\right)\) pt trở thành
\(3\left(x-2\right)y+18y^2-x=0\)
\(\Leftrightarrow\left(3y-1\right)\left(6y+x\right)=0\)
\(\Leftrightarrow3y-1=0\left(y\ge0;x\ge1\Rightarrow6y+x\ge1\right)\)
\(\Leftrightarrow y=\frac{1}{3}\)\(\Leftrightarrow\frac{\sqrt{x-1}}{\sqrt{x^2+x+1}}=\frac{1}{3}\)
\(\Leftrightarrow9\left(x-1\right)=x^2+x+1\)
\(\Leftrightarrow x^2-8x+10=0\)
\(\Leftrightarrow x=4\pm\sqrt{6}\)
Vậy...
cách 1:Viết thành hằng đẳng thức
\(\Leftrightarrow x^2+x+\frac{1}{4}=x+2010-\sqrt{x+2010}+\frac{1}{4}\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2=\left(\sqrt{x+2010}-\frac{1}{2}\right)^2\)
tới đây dễ rùi nhé
cách 2:\(ĐKXĐ:x\ge-2010\)
đặt \(\sqrt{x+2010}=t\left(t>0\right)\)
\(\Rightarrow x^2+t=t^2-x\)
\(\Rightarrow x^2-t^2+x+t=0\)
\(\Rightarrow\left(x+t\right)\left(x-t+1\right)=0\)
tự làm tiếp
cách 3:\(\Leftrightarrow\sqrt{x+2010}+x^2=2010\)
\(\Leftrightarrow\sqrt{x+2010}+x^2-2010=0\)
\(\Leftrightarrow x-\sqrt{2010-\sqrt{x+2010}}=0\)
\(\Leftrightarrow\sqrt{2010-\sqrt{x+2010}}+x=0\)
Đến đây tách căn ra ta đc 2 TH (1) và (2)
\(\Leftrightarrow2x+\sqrt{11}\sqrt{17}\sqrt{43}-1=0\left(1\right)\)
\(\Leftrightarrow2x+3\sqrt{19}\sqrt{47}+1=0\)
Tự làm tiếp
\(\Leftrightarrow2x-\sqrt{11}\sqrt{17}\sqrt{43}-1=0\left(2\right)\)
\(\Leftrightarrow2x-3\sqrt{19}\sqrt{47}+1=0\)
Tự làm tiếp nhé