Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
help me pls
cho hàm số y=-3x2
a) vẽ parabol
b) tìm điểm trên đồ thị (P) có hoành độ =2
tung độ = -27
c) hàm số đồng/nghịch biến khi nào ?
d) tìm tọa độ giao điểm của đồ thị (P) và đường thẳng y= -2V3x+1
Bài 5:
Để pt có 2 nghiệm $x_1,x_2$ thì:
$\Delta'=(m-1)^2-m^2\geq 0$
$\Leftrightarrow (m-1-m)(m-1+m)\geq 0$
$\Leftrightarrow 1-2m\geq 0\Leftrightarrow m\leq \frac{1}{2}(*)$
Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=2(m-1)\\ x_1x_2=m^2\end{matrix}\right.\)
Khi đó:
$(x_1-x_2)^2+6m=x_1-2x_2$
$\Leftrightarrow (x_1+x_2)^2-4x_1x_2+6m=(x_1+x_2)-3x_2$
$\Leftrightarrow 4(m-1)^2-4m^2+6m=2(m-1)-3x_2$
$\Leftrightarrow 4m-6=3x_2$
$\Leftrightarrow x_2=\frac{4}{3}m-2$
$x_1=2(m-1)-x_2=\frac{2}{3}m$
Suy ra:
$x_1x_2=m^2$
$\Leftrightarrow \frac{2}{3}m(\frac{4}{3}m-2)=m^2$
$\Leftrightarrow m(8m-12-9m)=0$
$\Leftrightarrow m(-m-12)=0$
$\Leftrightarrow m=0$ hoặc $m=-12$. Theo $(*)$ ta thấy 2 giá trị này đều thỏa mãn.
Bài 4:
Để pt có 2 nghiệm thì $\Delta'=4-2(2m^2-1)\geq 0$
$\Leftrightarrow m^2-1\leq 0\Leftrightarrow -1\leq m\leq 1$
Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=2\\ x_1x_2=\frac{2m^2-1}{2}\end{matrix}\right.\)
Khi đó:
$2x_1^2+4mx_2+2m^2-1\geq 0$
$\Leftrightarrow (2x_1^2-4mx_1+2m^2-1)+4mx_1+4mx_2\geq 0$
$\Leftrightarrow 0+4m(x_1+x_2)\geq 0$
$\Leftrightarrow 4m. 2\geq 0$
$\Leftrightarrow m\geq 0$
Kết hợp với điều kiện $-1\leq m\leq 1$ suy ra $0\leq m\leq 1$ thì ycđb được thỏa mãn.
c/
\(x\left(x+3\right)\left(x+1\right)\left(x+2\right)-24=0\)
\(\Leftrightarrow\left(x^2+3x\right)\left(x^2+3x+2\right)-24=0\)
Đặt \(x^2+3x=t\)
\(t\left(t+2\right)-24=0\Leftrightarrow t^2+2t-24=0\Rightarrow\left[{}\begin{matrix}t=4\\t=-6\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x^2+3x=4\\x^2+3x=-6\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2+3x-4=0\\x^2+3x+6=0\end{matrix}\right.\)
d/
\(\Leftrightarrow x^4-2x^3+x^2+3x^2-3x-10=0\)
\(\Leftrightarrow\left(x^2-x\right)^2+3\left(x^2-x\right)-10=0\)
Đặt \(x^2-x=t\)
\(t^2+3t-10=0\Rightarrow\left[{}\begin{matrix}t=2\\t=-5\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x^2-x=2\\x^2-x=-5\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2-x-2=0\\x^2-x+5=0\end{matrix}\right.\)
a/ ĐKXĐ: ...
Đặt \(x+\frac{1}{x}=t\Rightarrow x^2+\frac{1}{x^2}=t^2-2\)
\(2\left(t^2-2\right)-3t+2=0\)
\(\Leftrightarrow2t^2-3t-2=0\Rightarrow\left[{}\begin{matrix}t=2\\t=-\frac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+\frac{1}{x}=2\\x+\frac{1}{x}=-\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2-2x=1=0\\2x^2-x+2=0\end{matrix}\right.\)
b/ Với \(x=0\) ko phải nghiệm
Với \(x\ne0\) chia 2 vế của pt cho \(x^2\)
\(x^2+\frac{1}{x^2}-5x+\frac{5}{x}-8=0\)
\(\Leftrightarrow x^2+\frac{1}{x^2}-2-5\left(x-\frac{1}{x}\right)-6=0\)
Đặt \(x-\frac{1}{x}=t\Rightarrow t^2=x^2+\frac{1}{x^2}-2\)
\(t^2-5t-6=0\Rightarrow\left[{}\begin{matrix}t=-1\\t=6\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x-\frac{1}{x}=-1\\x-\frac{1}{x}=6\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2+x-1=0\\x^2-6x-1=0\end{matrix}\right.\)
PP chung ở cả 3 câu,nói ngắn gọn nhé:
Chứng mình x khác 0,hay nói cách khác x=0 không là nghiệm của phương trình.
Chia cả tử và mẫu cho x ,rồi giải bình thường bằng cách đặt ẩn phụ.
Vd ở câu a>>>4/(4x-8+7/x)+3/(4x-10+7/x)=1.Sau đó đặt 4x+7/x=a>>>4/(a-8)+3/(a-10)=1>>>giải bình thường,các câu sau tương tự
\(8x^2+11x+1=\left(x+1\right)\sqrt{4x^2+6x+5}\)
\(\left(8x^2+11x+1\right)^2=\left(x+1\right)^2\left(4x^2+6x+5\right)\)
\(\left(8x^2+11x+1\right)^2=4x^4+6x^3+5x^2+8x^3+12x^2+10x+4x^2+6x+5\)
\(64x^4+176x^3+137x^2+22x+1=4x^4+14x^3+21x^2+16x+5\)
\(64x^4+176x^3+137x^2+22x+1-4x^4-14x^3-21x^2-16x-5=0\)
Tự giải quyết nốt,đc chứ.
\(ĐK:x\inℝ\)
Phương trình đã cho tương đương với
\(\left(3x+2\right)^2-\left(x^2+x+3\right)\)\(=\left(x+1\right)\sqrt{\left(x+1\right)\left(3x+2\right)+\left(x^2+x+3\right)}\)
Đặt \(3x+2=u;\sqrt{4x^2+6x+5}=v\left(v\ge0\right)\)ta thu được hệ phương trình
\(\hept{\begin{cases}u^2=x^2+x+3+\left(x+1\right)v\\v^2=\left(x+1\right)u+x^2+x+3\end{cases}}\)\(\Rightarrow u^2-v^2=\left(x+1\right)\left(v-u\right)\)
\(\Leftrightarrow\left(u-v\right)\left(u+v+x+1\right)=0\Leftrightarrow\orbr{\begin{cases}u=v\\u+v+x+1=0\end{cases}}\)
Xét hai trường hợp:
TH1:\(u=v\Leftrightarrow3x+2=\sqrt{4x^2+6x+5}\) \(\Leftrightarrow\hept{\begin{cases}x\ge\frac{-2}{3}\\9x^2+12x+4=4x^2+6x+5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge\frac{-2}{3}\left(1\right)\\5x^2+6x-1=0\left(2\right)\end{cases}}\)
Giải phương trình (2), ta thu được hai nghiệm \(\frac{-3+\sqrt{14}}{5}\)và \(\frac{-3-\sqrt{14}}{5}\)kết hợp điều kiện (1) suy ra TH1 thu được 1 nghiệm \(x=\frac{\sqrt{14}-3}{5}\)
TH2: \(u+v+x+1=0\Leftrightarrow\sqrt{4x^2+6x+5}=-4x-3\)
\(\Leftrightarrow\hept{\begin{cases}x\le\frac{-3}{4}\\4x^2+6x+5=16x^2+24x+9\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x\le\frac{-3}{4}\left(3\right)\\12x^2+18x+4=0\left(4\right)\end{cases}}\)
Giải phương trình (4) ta thu được hai nghiệm \(\frac{-9-\sqrt{33}}{12}\)và \(\frac{-9+\sqrt{33}}{12}\)kết hợp điều kiện (3) suy ra TH2 thu được 1 nghiệm là \(x=-\frac{9+\sqrt{33}}{12}\)
Vậy phương trình có tập nghiệm \(S=\left\{\frac{\sqrt{14}-3}{5};-\frac{9+\sqrt{33}}{12}\right\}\)
nghiệm lẻ đề có sai không vậy