Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x\ge\frac{1}{2}\)
\(\Leftrightarrow x^2+4x+4+2x-1+2\sqrt{2x-1}+1=0\)
\(\Leftrightarrow\left(x+2\right)^2+\left(\sqrt{2x-1}+1\right)^2=0\)
Phương trình vô nghiệm do cả 2 số hạng đều dương
Mà chẳng cần phức tạp như thế, với \(x\ge\frac{1}{2}\) thì \(x^2+6x+4>0\) và \(\sqrt{2x-1}\ge0\) nên vế trái dương luôn, pt vô nghiệm
a) \(x^2-6x+26=6\sqrt{2x+1}\) (ĐKXĐ : \(x\ge-\frac{1}{2}\) )
\(\Leftrightarrow x^2-6x+26-6\sqrt{2x+1}=0\)
\(\Leftrightarrow\left(x^2-6x+8\right)-\left(6\sqrt{2x+1}-18\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)-6\left(\sqrt{2x+1}-3\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)-6\left(\frac{2x+1-9}{\sqrt{2x+1}+3}\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)-\frac{12\left(x-4\right)}{\sqrt{2x+1}+3}=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-2-\frac{12}{\sqrt{2x+1}+3}\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-4=0\\x-2-\frac{12}{\sqrt{2x+1}+3}=0\end{array}\right.\)
Với x - 4 = 0 => x = 4 (TMĐK)
Với \(x-2-\frac{12}{\sqrt{2x+1}+3}=0\Rightarrow x=4\left(TM\right)\)
Vậy phương trình có nghiệm x = 4
b) \(x+\sqrt{2x-1}=3+\sqrt{x+2}\) ( ĐKXĐ : \(x\ge\frac{1}{2}\))
\(x+\sqrt{2x-1}-3-\sqrt{x+2}=0\)
\(\Leftrightarrow\left(\sqrt{2x-1}-\sqrt{5}\right)-\left(\sqrt{x+2}-\sqrt{5}\right)+\left(x-3\right)=0\)
\(\Leftrightarrow\frac{2x-1-5}{\sqrt{2x-1}+\sqrt{5}}-\frac{x+2-5}{\sqrt{x+2}+\sqrt{5}}+\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(\frac{2}{\sqrt{2x-1}+\sqrt{5}}-\frac{1}{\sqrt{x+2}+\sqrt{5}}+1\right)=0\)
Vì \(x\ge\frac{1}{2}\) nên \(\frac{2}{\sqrt{2x-1}+\sqrt{5}}-\frac{1}{\sqrt{x+2}+\sqrt{5}}+1>0\) . Do đó x-3 = 0 => x = 3 (TMĐK)
Vậy phương trình có nghiệm x = 3
a) ĐK: \(x\inℝ\).
Đặt \(\sqrt{x^2-3x+4}=a>0\)
\(x^2-5x+4-\left(2x-1\right)a=0\)
\(\Leftrightarrow a^2-\left(2x-1\right)a-2x=0\)
\(\Leftrightarrow-\left(a+1\right)\left(2x-a\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=-1\left(L\right)\\2x=a\left(C\right)\end{cases}}\)
Xét \(2x=a\Leftrightarrow\hept{\begin{cases}x>0\\a^2=4x^2\end{cases}}\Leftrightarrow\hept{\begin{cases}x>0\\-3x^2-3x+4=0\end{cases}}\Leftrightarrow x=\frac{-3+\sqrt{57}}{6}\) ( đã loại 1 nghiệm vì ko t/m x> 0)
P/s: em ko chắc:v
\(\left(x-4\right)\left(x-5\right)\left(x-8\right)\left(x-10\right)=72x^2\)
\(\Leftrightarrow\left(x-4\right)\left(x-5\right)\left(x-8\right)\left(x-10\right)-72x^2=0\)
\(\Leftrightarrow\left(x^2-14x+40\right)\left(x^2-13x+40\right)-72x^2=0\)
\(\Leftrightarrow\left(x^2-13,5x+40-0,5x\right)\left(x^2-13,5x+40+0,5x\right)-72x^2=0\)
\(\Leftrightarrow\left(x^2-13,5x+40\right)^2-\left(0,5x\right)^2-72x^2=0\)
\(\Leftrightarrow\left(x^2-13,5x+40\right)^2-72,25x^2=0\)
\(\Leftrightarrow\left(x^2-13,5x+40+8,5x\right)\left(x^2-13,5x+40-8,5x\right)=0\)
\(\Leftrightarrow\left(x^2-5x+40\right)\left(x^2-22x+40\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-5x+40=0\left(VN\right)\\x^2-22x+40=0\Leftrightarrow\left[{}\begin{matrix}x=20\\x=2\end{matrix}\right.\end{matrix}\right.\)
Câu a,c xem lại đề, cách làm giống câu b, còn câu e giống câu d
b) \(2x^4+5x^3+x^2+5x+2=0\)
Ta nhận thấy x=0 không phải là 1 nghiệm của phương trình, chia cả 2 vế của phương trình cho \(x^2\ne0\), ta được:
\(2x^2+5x+1+\dfrac{5}{x}+\dfrac{2}{x^2}=0\)
\(\Leftrightarrow2\left(x^2+\dfrac{1}{x^2}\right)+5\left(x+\dfrac{1}{x}\right)+1=0\)
Đặt \(y=x+\dfrac{1}{x}\Rightarrow x^2+\dfrac{1}{x^2}=y^2-2\)
\(\Leftrightarrow2\left(y^2-2\right)+5y+1=0\)
\(\Leftrightarrow2y^2+5y-3=0\)
PT đơn giản, tự giải nha, ta được nghiệm y=1/2 và y=-3
Với y=1/2 thì không tìm được x
Với y=-3 thì tìm được 2 nghiệm, tự giải
1) Đk: x khác -3
x khác 1
Biểu thức \(\Leftrightarrow\dfrac{x^2-x}{x^2+2x-3}+\dfrac{2x+6}{x^2+2x-3}=\dfrac{12}{x^2+2x-3}\)
\(\Leftrightarrow x^2-x+2x+6=12\Leftrightarrow x^2+x-6=0\Leftrightarrow\left(x-2\right)\left(x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)
kl: x thuộc {-3;2}
\(2x^2-\left(1-2\sqrt{2}\right)x-\sqrt{2}=0\)
\(\Leftrightarrow\) \(2x^2-x-2x\sqrt{2}-\sqrt{2}=0\)
\(\Leftrightarrow\) \(2\left(x^2-\dfrac{1}{2}x-x\sqrt{2}-\dfrac{\sqrt{2}}{2}\right)=0\)
\(\Leftrightarrow\) \(2\left(x-\dfrac{1}{2}\right)\left(x+\sqrt{2}\right)=0\)
\(\Leftrightarrow\) \(x-\dfrac{1}{2}=0\) hoặc \(x+\sqrt{2}=0\)
\(\Leftrightarrow\) \(x=\dfrac{1}{2}\) \(\Leftrightarrow\) \(x=-\sqrt{2}\)
Bạn chưa hiểu cách phân tích thì xem ở video này :https://www.youtube.com/watch?v=8STBCtfr0Dg
ĐKXĐ: \(x\ge\frac{1}{2}\)
\(\Leftrightarrow x^2-4x+4-2x+1+2\sqrt{2x-1}-1=0\)
\(\Leftrightarrow\left(x-2\right)^2-\left(2x-1-2\sqrt{2x-1}+1\right)=0\)
\(\Leftrightarrow\left(x-2\right)^2-\left(\sqrt{2x-1}-1\right)^2=0\)
\(\Leftrightarrow\left(x-3+\sqrt{2x-1}\right)\left(x-1-\sqrt{2x-1}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2x-1}=3-x\left(x\le3\right)\\\sqrt{2x-1}=x-1\left(x\ge1\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=x^2-6x+9\\2x-1=x^2-2x+1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-8x+10=0\\x^2-4x+2=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=4+\sqrt{6}\left(l\right)\\x=4-\sqrt{6}\\x=2+\sqrt{2}\\x=2-\sqrt{2}\left(l\right)\end{matrix}\right.\)