Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x-2019\right)^{2019}=\left(x-2019\right)^{2018}\)
\(\Leftrightarrow\left(x-2019\right)^{2019}-\left(x-2019\right)^{2018}=0\)
\(\Leftrightarrow\left(x-2019\right)^{2018}\left(x-2019-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=2019\\x=2020\end{cases}}\)
Ta có: \(\left(x-2019\right)^{2019}=\left(x-2019\right)^{2018}\)
\(\Leftrightarrow\left(x-2019\right)^{2019}-\left(x-2019\right)^{2018}=0\)
\(\Leftrightarrow\left(x-2019\right)^{2018}.\left(x-2019-1\right)=0\)
\(\Leftrightarrow\left(x-2019\right)^{2018}.\left(x-2020\right)=0\)
\(\Rightarrow\)\(x-2020=0\)Hoặc \(\left(x-2019\right)^{2018}=0\)
\( TH1:x-2020=0\Rightarrow x=2020\)
\(TH2:\left(x-2019\right)^{2018}=0\Leftrightarrow x-2019=0\Leftrightarrow x=2019\)
Vậy x= 2019 và x=2020
#Học tốt
x2018=x2019
<=>x2018-x2019=0
<=>x2018(1-x)=0
\(\Rightarrow\orbr{\begin{cases}x=0\\1-x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
Vậy..
MÌNH CHỈ HUONWGS DẪN CÁCH LÀM THÔI NHÉ
P2 TÁCH SỐ
1x22 +2x32+3x42 +.....+2018x20192 + 2019x20202
= 1x2x3 - 1x2 + 2x3x4 - 2x3+ 3x4x5 - 3x4 + ... + 2018x2019x2020 - 2018x2019 +2019x2020x2021 - 2019x2020
=(1x2x3+3x4x5+....+2018x2019x2020+2019x2020x2021) - (1x2+2x3+..+2018x2019+2019x2020)
= S - P (*****)
Tính 4S => S=..... (1)
Tính 3P => P=..... (2)
TỪ (1) và (2) thay vào (*****) TA TÍNH ĐƯỢC A=.....
\(83-5\left(x+2\right)=5^2+2^2.2\)
\(\Rightarrow83-5\left(x+2\right)=25+4.2\)
\(\Rightarrow83-5\left(x+2\right)=25+8=33\)
\(\Rightarrow5\left(x+2\right)=83-33=50\)
\(\Rightarrow x+2=50:5=10\)
\(\Rightarrow x=10-2=8\)
\(2018-100\left(x+11\right)=2^{2019}:2^{2018}+4^2\)
\(\Rightarrow2018-100\left(x+11\right)=2+16=18\)
\(\Rightarrow100\left(x+11\right)=2018-18=2000\)
\(\Rightarrow x+11=2000:100=20\)
\(\Rightarrow x=20-11=9\)
Chúc em học tốt nhé!
\(b,2^3+3x=2018\)
\(\Rightarrow8+3x=2018\)
\(\Rightarrow3x=2018-8=2010\)
\(\Rightarrow x=2010:3=670\)
a) =((1+15).4^2018):4^2019
=4^(2+2018):4^2019
=4^(2020-2019)
=4^1
=4
b)5.2^x-1=4=>5.2^x=4+1
=>2^x=5
=>x gần bằng 2,32
\(\left(x-1\right)^{2018}=\left(x-1\right)^{2019}\)
\(\Leftrightarrow\left(x-1\right)^{2018}-\left(x-1\right)^{2019}=0\)
\(\Leftrightarrow\left(x-1\right)^{2018}\left[\left(x-1\right)-1\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x-1\right)^{2018}=0\\\left(x-1\right)-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}\)
\(\orbr{\begin{cases}\left(x-1\right)^{2018}\\\left(x-1\right)^{2019}\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=1\end{cases}}\)
\(\Leftrightarrow x=1\)
\(TH2:\Leftrightarrow\orbr{\begin{cases}\left(x-1\right)^{2018}\\\left(x-1\right)^{2019}\end{cases}}\Rightarrow\orbr{\begin{cases}x=2+1\\x=2+1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=3\\x-1=3\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=2\end{cases}}\)
\(\Leftrightarrow x=2\)
\(x^{2019}=x^{2018}\)
=> \(x^{2019}-x^{2018}=0\)
=> \(x^{2018}.\left(x-1\right)=0\)
=> \(\orbr{\begin{cases}x^{2018}=0\\x-1=0\end{cases}}\) => \(\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
Vậy x=0 hoặc x=1
cvcvcvbvbv