Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
MÌNH CHỈ HUONWGS DẪN CÁCH LÀM THÔI NHÉ
P2 TÁCH SỐ
1x22 +2x32+3x42 +.....+2018x20192 + 2019x20202
= 1x2x3 - 1x2 + 2x3x4 - 2x3+ 3x4x5 - 3x4 + ... + 2018x2019x2020 - 2018x2019 +2019x2020x2021 - 2019x2020
=(1x2x3+3x4x5+....+2018x2019x2020+2019x2020x2021) - (1x2+2x3+..+2018x2019+2019x2020)
= S - P (*****)
Tính 4S => S=..... (1)
Tính 3P => P=..... (2)
TỪ (1) và (2) thay vào (*****) TA TÍNH ĐƯỢC A=.....
x2018=x2019
<=>x2018-x2019=0
<=>x2018(1-x)=0
\(\Rightarrow\orbr{\begin{cases}x=0\\1-x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
Vậy..
\(x^{2019}=x^{2018}\)
=> \(x^{2019}-x^{2018}=0\)
=> \(x^{2018}.\left(x-1\right)=0\)
=> \(\orbr{\begin{cases}x^{2018}=0\\x-1=0\end{cases}}\) => \(\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
Vậy x=0 hoặc x=1
\(b,2^3+3x=2018\)
\(\Rightarrow8+3x=2018\)
\(\Rightarrow3x=2018-8=2010\)
\(\Rightarrow x=2010:3=670\)
\(A=\frac{2018^{2019}+1}{2018^{2019}-2017}=\frac{2018^{2019}-2017+2018}{2018^{2019}-2017}=\frac{2018^{2019}-2017}{2018^{2019}-2017}+\frac{2018}{2018^{2019}-2017}=1+\frac{2018}{2018^{2019}-2017}\)\(B=\frac{2018^{2019}+2}{2018^{2019}-2016}=\frac{2018^{2019}-2016+2018}{2018^{2019}-2016}=\frac{2018^{2019}-2016}{2018^{2019}-2016}+\frac{2018}{2018^{2019}-2016}=1+\frac{2018}{2018^{2019}-2016}\)Ta có: \(2018^{2019}-2017< 2018^{2019}-2016\)
\(\Rightarrow\frac{2018}{2018^{2019}-2017}>\frac{2018}{2018^{2019}-2016}\)
\(\Rightarrow1+\frac{2018}{2018^{2019}-2017}>1+\frac{2018}{2018^{2019}-2016}\)
\(\Rightarrow A>B\)
Vậy...
Ta có :
\(A=\frac{2018^{2019}+1}{2018^{2019}-2017}=\frac{2018^{2019}-2017+2018}{2018^{2019}-2017}=1+\frac{2018}{2018^{2019}-2017}\)
\(B=\frac{2018^{2019}+2}{2018^{2019}-2016}=\frac{2018^{2019}-2016+2018}{2018^{2019}-2016}=1+\frac{2018}{2018^{2019}-2016}\)
Vì \(2018^{2019}-2017< 2018^{2019}-2016\)nên \(\frac{2018}{2018^{2019}-2017}>\frac{2018}{2018^{2019}-2016}\)hay \(A>B\)
~ Hok tốt ~
\(\left(x-2019\right)^{2019}=\left(x-2019\right)^{2018}\)
\(\Leftrightarrow\left(x-2019\right)^{2019}-\left(x-2019\right)^{2018}=0\)
\(\Leftrightarrow\left(x-2019\right)^{2018}\left(x-2019-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=2019\\x=2020\end{cases}}\)
Ta có: \(\left(x-2019\right)^{2019}=\left(x-2019\right)^{2018}\)
\(\Leftrightarrow\left(x-2019\right)^{2019}-\left(x-2019\right)^{2018}=0\)
\(\Leftrightarrow\left(x-2019\right)^{2018}.\left(x-2019-1\right)=0\)
\(\Leftrightarrow\left(x-2019\right)^{2018}.\left(x-2020\right)=0\)
\(\Rightarrow\)\(x-2020=0\)Hoặc \(\left(x-2019\right)^{2018}=0\)
\( TH1:x-2020=0\Rightarrow x=2020\)
\(TH2:\left(x-2019\right)^{2018}=0\Leftrightarrow x-2019=0\Leftrightarrow x=2019\)
Vậy x= 2019 và x=2020
#Học tốt