K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 2 tham khảo tại

Câu hỏi của Hang Le - Toán lớp 7 | Học trực tuyến

Học tốt!!!!

8 tháng 8 2019

tên mày như cái lông lồn ý, đổi tên đi con

18 tháng 8 2018

a)4x-1+5.4x-2=576

=> 4x-1(1+5.\(4^{-1}\))=576

=> 4x-1.\(\dfrac{9}{4}\)=576

=> 4x-1=256=44

=> x-1=4

=> x=5

b) (2x-1)6=(2x-1)8

=> (2x-1)6 - (2x-1)8=0

=> (2x-1)6(1- (2x-1)2)=0

=>\(\left[{}\begin{matrix}\left(2x-1\right)^6=0\\1-\left(2x-1\right)^2=0\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}2x-1=0\\\left(2x-1\right)^2=1\end{matrix}\right.=>\left[{}\begin{matrix}2x=1\\\left(2x-1\right)^2=1hoặc\left(2x-1\right)^2=-1\end{matrix}\right.\)=>\(\left[{}\begin{matrix}x=\dfrac{1}{2}\\2x-1=1hoặc2x-1=-1\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=\dfrac{1}{2}\\2x=2hoặc2x=0\end{matrix}\right.=>\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=1hoặcx=0\end{matrix}\right.\)

Vậy x\(\in\)\(\left\{\dfrac{1}{2},1,0\right\}\)

18 tháng 8 2018

c) (2x-5)2000+(3y+4)2002 \(\le0\)

Có (2x-5)2000\(\ge\)0 với mọi x

(3y+4)2002\(\ge\)0 với mọi y

=> (2x-5)2000+(3y+4)2002 \(\ge\) 0

=> Để (2x-5)2000+(3y+4)2002 \(\le0\) thì (2x-5)2000+(3y+4)2002 =0

=> \(\left\{{}\begin{matrix}\left(2x-5\right)^{2000}=0\\\left(3y+4\right)^{2002}=0\end{matrix}\right.=>\left\{{}\begin{matrix}2x-5=0\\3y+4=0\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}2x=5\\3y=-4\end{matrix}\right.=>\left\{{}\begin{matrix}x=\dfrac{5}{2}\\y=\dfrac{-4}{3}\end{matrix}\right.\)

Vậy x=\(\dfrac{5}{2}\);y=\(\dfrac{-4}{3}\)

Bài 2:

Có A=2100-299+298-...+22-2

=> 2A=2(2100-299+298-...+22-2)

=> 2A= 2101-2100+299-...+23-22

=> 2A= 2101-2100+299-...+23-22

+A= 2100-299+298-...+22-2

=> 3A= 2101-2

=> A=\(\dfrac{2^{101}-2}{3}\)

29 tháng 7 2016

bài 1 

A(x)=\(x^{99}-100x^{98}+100x^{97}-100x^{96}+...+100x+1\)

      = \(x^{99}-\left(99+1\right)x^{98}+\left(99+1\right)x^{97}-\left(99+1\right)x^{96}+...+\left(99+1\right)x-1\)

thay 99=x ta được:

A(x)=\(x^{99}-\left(x+1\right)x^{98}+\left(x+1\right)x^{97}-\left(x+1\right)x^{96}+...+\left(x+1\right)x-1\)

      = \(x^{99}-x^{99}-x^{98}+x^{98}+x^{97}-x^{97}-x^{96}+...+x^2+x-1\)

      =x-1

thay x=99 vào đa thức A(x) ta được :

A(99)=99-1

         =98

vậy tại x=99 thì giá trị của A(x)=98

bài 2:

tại x=1 thay vào đa thức P(x) ta được :

P(1)=\(100.1^{100}+99.1^{99}+...+2.1^2+1\)

       = 100+99+...+2+1

       =5050

vậy tại x=1 thì giá trị của P(x)=5050

31 tháng 7 2016

sao lại thay x=99-2 lần thế

2 tháng 7 2018

\(P\left(x\right)=\left(x^{99}-99x^{98}\right)-\left(x^{98}-99x^{97}\right)+\left(x^{97}-99x^{96}\right)-...-\left(x^2-99x\right)+x-1\)

             \(=\left(x-99\right)\left(x^{98}-x^{97}+x^{96}-...+x^2-x\right)+x-1\)

\(P\left(99\right)=\left(99-99\right)\left(99^{98}-99^{97}+99^{96}-...+99^2-99\right)+99-1=98\)

Ta có : x = 99 

=> 100 = x + 1 

Ta có : P(99) = x99 - (x + 1)x98 + (x + 1)x97 - (x + 1)x96 + ..... + (x + 1)x  - 1

                     = x99 - x99 - x98 + x98 + x97 - x97 - x96 + .... + x2 + x - 1 

                     = x - 1 

                    = 99 - 1 = 98 

27 tháng 9 2020

A = 2100- 299 + 298 - 297 + ... + 22 - 2

=> 2A =  2101 - 2100 + 299 - 298 + ... + 23 - 22 

Khi đó 2A  + A = (2101 - 2100 + 299 - 298 + ... + 23 - 22) + (2100- 299 + 298 - 297 + ... + 22 - 2)

=> 3A = 2101 - 2

=> \(A=\frac{2^{201}-2}{3}\)

b) Ta có B = 3100- 399 + 398 - 397 + ... + 32 - 3 + 1

=> 3B = 3101 - 3100 + 399 - 398  + ... + 33 - 32 + 3

Khi đó 3B + B = (3101 - 3100 + 399 - 398  + ... + 33 - 32 + 3) + (3100- 399 + 398 - 397 + ... + 32 - 3 + 1)

=> 4B = 3101 + 1

=> B = \(\frac{3^{101}+1}{4}\)

27 tháng 9 2020

a) \(A=2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\)

=> \(2A=2^{101}-2^{100}+2^{99}-2^{98}+...+2^3-2^2\)

=> \(2A+A=\left(2^{101}-2^{100}+...-2^2\right)+\left(2^{100}-2^{99}+...-2\right)\)

<=> \(3A=2^{101}-2\)

=> \(A=\frac{2^{101}-2}{3}\)

b) \(B=3^{100}-3^{99}+3^{98}-3^{97}+...+3^2-3+1\)

=> \(3A=3^{101}-3^{100}+3^{99}-3^{98}+...+3^3-3^2+3\)

=> \(3A+A=\left(3^{101}-3^{100}+...+3\right)+\left(3^{100}-3^{99}+...+1\right)\)

<=> \(4A=3^{101}+1\)

=> \(A=\frac{3^{101}+1}{4}\)

28 tháng 4 2016

không biết có đúng ko

ta có: 3000x98 -3000x98 +3000x97 -3000x97 +.....

=0+0+0+....

=>x99 +3000x98 -3000x98 +3000x97 -........+3000x+1

= x99 +0+0+...+3000x+1

= x.x98 +3000x+1

=x(x98+3000)+1

thay x=299.Ta có

299(29998+3000)+1

2 tháng 7 2019

\(P\left(x\right)=x^{99}-100x^{98}+100x^{97}-100x^{96}+...+100x-1\)

\(\Leftrightarrow P\left(x\right)=x^{99}-100x^{98}+100x^{97}-100x^{96}+...+100x-1\)

\(\Leftrightarrow P\left(x\right)=x^{99}-99x^{98}-x^{98}+99x^{97}+x^{97}-...+99x+x-1\)

\(\Leftrightarrow P\left(x\right)=x^{98}\left(x-99\right)-x^{97}\left(x-99\right)+...+\left(x-1\right)\)

\(\Leftrightarrow P\left(x\right)=x^{98}\left(x-99\right)-x^{97}\left(x-99\right)+...+\left(99-1\right)\)

\(\Leftrightarrow P\left(99\right)=x^{98}\left(99-99\right)-x^{97}\left(99-99\right)+...+98\)

\(\Leftrightarrow P\left(99\right)=x^{98}.0-x^{97}.0+...+98\)

\(\Leftrightarrow P\left(99\right)=98\)

Tham khảo:

Câu hỏi của Bích Ngọc - Toán lớp 7 | Học trực tuyến

Học tốt

26 tháng 3 2020

Câu hỏi của Jin Tiyeon - Toán lớp 7 - Học toán với OnlineMath

Em click chuột  vào link trên.