Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(x=\frac{2-\sqrt{3}}{2}=\frac{2.\left(2-\sqrt{3}\right)}{4}=\frac{4-2\sqrt{3}}{4}\)
\(=\frac{3-2\sqrt{3}+1}{4}=\frac{\left(\sqrt{3}-1\right)^2}{4}\)
\(\Rightarrow\sqrt{x}=\sqrt{\frac{\left(\sqrt{3}-1\right)^2}{4}}=\frac{\left|\sqrt{3}-1\right|}{2}=\frac{\sqrt{3}-1}{2}\)
1,
\(D=\frac{1}{\sqrt{h+2\sqrt{h-1}}}+\frac{1}{\sqrt{h-2\sqrt{h-1}}}\)
\(=\frac{1}{\sqrt{h-1+2\sqrt{h-1}+1}}+\frac{1}{\sqrt{h-1-2\sqrt{h-1}+1}}\)
\(=\frac{1}{\sqrt{h-1}+1}+\frac{1}{\sqrt{h-1}-1}\)
\(=\frac{\sqrt{h-1}-1+\sqrt{h-1}+1}{h-1-1}\)
\(=\frac{2\sqrt{h-1}}{h-2}\)
Thay \(h=3\)vào D ta có:
\(D=\frac{2\sqrt{3-1}}{3-2}=2\sqrt{2}\)
Vậy với \(h=3\)thì \(D=2\sqrt{2}\)
2,
a, \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\)(ĐK: \(x\ge1\))
\(\Leftrightarrow\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}+2=0\)
\(\Leftrightarrow-2\sqrt{x-1}=-2\)
\(\Leftrightarrow\sqrt{x-1}=1\Leftrightarrow x=2\left(TM\right)\)
Vậy PT có nghiệm là \(x=2\)
b, \(\sqrt{9x^2+18}+2\sqrt{x^2+2}-\sqrt{25x^2+50}+3=0\)(ĐK: \(-\sqrt{2}\le x\le\sqrt{2}\))
\(\Leftrightarrow3\sqrt{x^2+2}+2\sqrt{x^2+2}-5\sqrt{x^2+2}=-3\)
\(\Leftrightarrow0=-3\)(vô lí)
Vậy PT đã cho vô nghiệm.
\(A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}\right):\left(\frac{2}{x^2-1}-\frac{x}{x-1}+\frac{1}{x+1}\right)\) Đkxđ : x khác 1 ; x khác -1
\(A=\frac{\left(x+1\right)^2-\left(x-1\right)^2}{x^2-1}:\frac{2-x\left(x+1\right)+x-1}{x^2-1}\)
\(A=\frac{x^2+2x+1-x^2+2x-1}{x^2-1}.\frac{x^2-1}{2-x^2-1+x-1}\)
\(A=\frac{4x}{-x^2+x}=\frac{4x}{x\left(1-x\right)}\)
\(A=\frac{4}{1-x}\)
bài 2 : ĐKXĐ : \(x\ge0\) và \(x\ne1\)
Rút gọn :\(B=\frac{\sqrt{x}+1}{\sqrt{x}-1}-\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{5\sqrt{x}-1}{x-1}\)
\(B=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{5\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(B=\frac{x+2\sqrt{x}+1-x+2\sqrt{x}-1-5\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(B=\frac{-\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(B=\frac{-1}{\sqrt{x}+1}\)
a. ĐKXĐ:
\(\hept{\begin{cases}\sqrt{x}-1\ne0\\x-\sqrt{x}\ne0\\x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x>0\\x\ne1\end{cases}}}\)
b. ta có \(A=\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{x-1}{\sqrt{x}.\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}+1}{\sqrt{x}}\)
c. khi \(x=\frac{1}{4}\Rightarrow\sqrt{x}=\frac{1}{2}\Rightarrow A=\frac{\frac{1}{2}+1}{\frac{1}{2}}=3\)
khi \(x=3+2\sqrt{2}\Rightarrow\sqrt{x}=\sqrt{2}+1\Rightarrow A=\frac{\sqrt{2}+1+1}{\sqrt{2}+1}=\sqrt{2}\)
\(a,ĐKXĐ:A=x\ge0;x\ne1\)
\(b,A=\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{1}{x-\sqrt{x}}\)
\(A=\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(A=\frac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(A=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(A=\frac{\sqrt{x}+1}{\sqrt{x}}< =>ĐPCM\)
c,thay \(x=\frac{1}{4}\)vào A
\(c,A=\frac{\sqrt{\frac{1}{4}}+1}{\sqrt{\frac{1}{4}}}\)
\(A=\frac{\frac{1}{2}+1}{\frac{1}{2}}\)
\(A=3\)
\(x=3+2\sqrt{2}\)
\(x=\sqrt{2}^2+2\sqrt{2}+1\)
\(x=\left(\sqrt{2}+1\right)^2\)thay x vào A
\(A=\frac{\sqrt{\left(\sqrt{2}+1\right)^2}+1}{\sqrt{\left(\sqrt{2}+1\right)^2}}\)
\(A=\frac{\sqrt{2}+1+1}{\sqrt{2}+1}\)
\(A=\frac{2+\sqrt{2}}{\sqrt{2}+1}\)
\(A=\frac{\sqrt{2}\left(\sqrt{2}+1\right)}{\sqrt{2}+1}=\sqrt{2}\)
Thuy Duong Nguyen đánh đề cẩn thận hơn bạn nhé
Lời giải :
a) ĐKXĐ : \(x\ne1\)
\(A=\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)
\(A=\frac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}+\frac{\left(\sqrt{x}+3\right)\left(2-3\sqrt{x}\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\frac{\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(A=\frac{15\sqrt{x}-11-3x+6-7\sqrt{x}-2x-\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(A=\frac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(A=\frac{\left(\sqrt{x}-1\right)\left(-5\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(A=\frac{2-5\sqrt{x}}{\sqrt{x}+3}\)
b) \(x=3-2\sqrt{2}=2-2\sqrt{2}+1=\left(\sqrt{2}-1\right)^2\)
\(\Leftrightarrow\sqrt{x}=\sqrt{2}-1\)
Khi đó \(A=\frac{2-5\left(\sqrt{2}-1\right)}{\sqrt{2}-1+3}\)
\(A=\frac{2-5\sqrt{2}+5}{\sqrt{2}+2}=\frac{7-5\sqrt{2}}{\sqrt{2}+2}\)
c) \(A=\frac{1}{2}\)
\(\Leftrightarrow\frac{2-5\sqrt{x}}{\sqrt{x}+3}=\frac{1}{2}\)
\(\Leftrightarrow2\left(2-5\sqrt{x}\right)=\sqrt{x}+3\)
\(\Leftrightarrow4-10\sqrt{x}-\sqrt{x}-3=0\)
\(\Leftrightarrow1-11\sqrt{x}=0\)
\(\Leftrightarrow11\sqrt{x}=1\)
\(\Leftrightarrow\sqrt{x}=\frac{1}{11}\)
\(\Leftrightarrow x=\frac{1}{121}\)( thỏa )
d) A nguyên \(\Leftrightarrow2-5\sqrt{x}⋮\sqrt{x}+3\)
\(\Leftrightarrow-5\left(\sqrt{x}+3\right)+17⋮\sqrt{x}+3\)
Vì \(-5\left(\sqrt{x}+3\right)⋮\sqrt{x}+3\)
\(\Rightarrow17⋮\sqrt{x}+3\)
\(\Rightarrow\sqrt{x}+3\inƯ\left(17\right)=\left\{17\right\}\)( vì \(\sqrt{x}+3\ge3\))
\(\Leftrightarrow\sqrt{x}=14\)
\(\Leftrightarrow x=196\)( thỏa )
Vậy....
\(a,ĐKXĐ:\orbr{\begin{cases}x+2\sqrt{x}+3\ne0\\\sqrt{x}+3\ne0\end{cases}}\)
\(\Leftrightarrow\orbr{ }\sqrt{x}\ne-3\)
Rút gọn: p/s: sau phân số thứ 2 ở mẫu ko có x à? Bạn chép đề sai?
\(\sqrt{X}\)= -a
Mình mới học lớp 8 lên làm sợ sai ý