K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2019

ĐKXĐ\(\left\{{}\begin{matrix}x\ge0\\4-x\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\-x\ne-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne4\end{matrix}\right.\)

Cậu nhầm ở chỗ chuyển từ dương 4 sang thì phải thành -4

24 tháng 9 2019

\(A=\left(\frac{1}{x-4}-\frac{1}{x+4\sqrt{x}+4}\right):\frac{x+2\sqrt{x}}{\sqrt{x}}.\)

\(A=\left(\frac{1}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\frac{1}{\left(\sqrt{x}+2\right)^2}\right):\frac{x+2\sqrt{x}}{\sqrt{x}}.\)

\(A=\left(\frac{\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)^2\left(\sqrt{x}-2\right)}-\frac{\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)^2\left(\sqrt{x}-2\right)}\right):\frac{x+2\sqrt{x}}{\sqrt{x}}.\)

\(A=\left(\frac{\sqrt{x}+2-\sqrt{x}+2}{\left(\sqrt{x}+2\right)^2\left(\sqrt{x}-2\right)}\right):\frac{x+2\sqrt{x}}{\sqrt{x}}.\)

\(A=\frac{4}{\left(\sqrt{x}+2\right)^2\left(\sqrt{x}-2\right)}:\frac{x+2\sqrt{x}}{\sqrt{x}}.\)

\(A=\frac{4}{\left(\sqrt{x}+2\right)^2\left(\sqrt{x}-2\right)}\cdot\frac{\sqrt{x}}{x+2\sqrt{x}}\)

\(A=\frac{4}{\left(\sqrt{x}+2\right)^2\left(\sqrt{x}-2\right)}\cdot\frac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x+2}\right)}\)

\(A=\frac{4}{\left(\sqrt{x}+2\right)^2\left(\sqrt{x}-2\right)}\cdot\frac{1}{\left(\sqrt{x+2}\right)}\)

\(A=\frac{4}{\left(\sqrt{x}+2\right)^3\left(\sqrt{x}-2\right)}\)

a) Ta có: \(A=\frac{\sqrt{x}+1}{\sqrt{x}-2}+\frac{2\sqrt{x}}{\sqrt{x}+2}+\frac{2+5\sqrt{x}}{4-x}\)

\(=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{2\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\frac{2+5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{x+3\sqrt{x}+2+2x-4\sqrt{x}-2-5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{3x-6\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{3\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{3\sqrt{x}}{\sqrt{x}+2}\)

26 tháng 9 2020

a) Ta có: \(x=9\)thỏa mãn đk 

\(\Rightarrow\)Thay \(x=9\)vào biểu thức ta được: 

\(A=\frac{3\sqrt{9}}{1-\sqrt{9}}=\frac{9}{-2}=\frac{-9}{2}\)

b) Với x thỏa mãn ĐKXĐ thì ta có:

\(B=\frac{1}{\sqrt{x}+2}-\frac{x+12}{4-x}-\frac{4}{\sqrt{x}-2}\)

\(=\frac{1}{\sqrt{x}+2}+\frac{x+14}{x-4}-\frac{4}{\sqrt{x}-2}\)

\(=\frac{\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}+\frac{x+12}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\frac{4\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{\left(\sqrt{x}-2\right)+\left(x+12\right)-4\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{\sqrt{x}-2+x+12-4\sqrt{x}-8}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{x-3\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{\sqrt{x}-1}{\sqrt{x}+2}\)

26 tháng 9 2020

1. x = 9 => A = \(\frac{3\sqrt{9}}{1-\sqrt{9}}=\frac{9}{-2}=-\frac{9}{2}\)

2. \(B=\frac{1}{\sqrt{x}+2}-\frac{x+12}{4-x}-\frac{4}{\sqrt{x}-2}=\frac{\sqrt{x}-2+x+12-4\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{x-3\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{x-\sqrt{x}-2\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{\sqrt{x}-1}{\sqrt{x}+2}\)

3. \(AB>-\frac{3}{4}\) <=> \(\frac{3\sqrt{x}}{1-\sqrt{x}}\cdot\frac{\sqrt{x}-1}{\sqrt{x}+2}>-\frac{3}{4}\)

<=> \(-\frac{3\sqrt{x}}{\sqrt{x}+2}+\frac{3}{4}>0\)

<=> \(\frac{12\sqrt{x}-3\sqrt{x}-4}{4\left(\sqrt{x}+2\right)}< 0\)

<=> \(\frac{9\sqrt{x}-4}{4\sqrt{x}+8}< 0\)

Do \(4\sqrt{x}+8>0\)với mọi x => \(9\sqrt{x}-4< 0\) <=> \(x< \frac{16}{81}\)