Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(P\left(x\right)=ax^2+bx+c\)
+) \(P\left(0\right)=a.0^2+b.0+c=c⋮7\)
+) \(P\left(1\right)=a.1^2+b.1+c=a+b+c\)
mà \(c⋮7\)
=> a+b\(⋮7\)(1)
+) \(P\left(2\right)=a.2^2+b.2+c=4a+2b+c=2\left(2a+b\right)+c\)
mà c chia hết cho 7
=>2(2a+b) chia hết cho 7
=> 2a+b chia hết cho 7 vì (2,7)=1
=> a+(a+b) chia hết cho 7
=> a chia hết cho 7 vì a+b chia hết cho7
=> b chia hết cho 7
vầy a,b,c chia hết cho 7
ta có f(x)=ax\(^2\)+bx+c
tại x=0 =>f(0)=c\(⋮\)7(1)
x=1=>f(1)=a+b+c\(⋮\)7
mà c\(⋮\)7=>a+b\(⋮\)7(2)
x=-1=>f(-1)=a-b+c
mà c\(⋮\)7=>a-b\(⋮\)7(3)
từ (2)(3)có a+b+a-b=2a\(⋮\)7
mà 2;7=(1)
=>a\(⋮\)7(4)
từ (4)(3)ta có a-b\(⋮\)7
a\(⋮\)7
=>b\(⋮\)7(5)
từ (1)(4)(5)suy ra a,b,c\(⋮\)7

\(P\left(0\right)=ax^2+bx+c=a.0+b.0+c=c\)
\(P\left(1\right)=ax^2+bx+c=a.1+b.1+c=a+b+c\)
\(P\left(2\right)=ax^2+bx+c=a.2^2+b.2+c=4a+2b+c\)
Do \(P\left(x\right)⋮3\forall x\in Z\) nên c;a+b+c;4a+2b+c đều chia hết cho 3
=>\(\left(a+b+c\right)-c=a+b⋮3\Rightarrow2\left(a+b\right)=2a+2b⋮3\);\(\left(4a+2b+c\right)-c=4a+2b⋮3\)
=>\(\left(4a+2b\right)-\left(2a+2b\right)=2a⋮3\) mà (2;3)=1 => a chia hết cho 3
a+b+c chia hết cho 3 mà a;c đều chia hết cho 3 => b cũng chia hết cho 3
=>....
P(x) chia hết cho 2 hả bạn ?
Ta có: p(x) = a\(x^2\) + bx + c
+) P(0) = a.\(0^2\)+ b.0 + c = c chia hết cho 7
+) P(1) = a.\(1^2\) + b.1 +c =a + b + c vì c chia hết cho 7 nên a + b phải chia hết cho 7 (1)
P(2) = a.\(2^2\)+ b.2 + c =4a + 2b + c = 2 .(2a + b)+ c mà c chia hết cho 7 nên 2.(2a + b) + c phải chia hết cho 7
Có: 2(2a + b) chia hết cho 7
=> 2a+b chia hết cho 7
=> a + (a + b) chia hết cho 7
Vì a + b chia hết cho 7 nên a cũng chia hết cho 7
=> b cũng chia hết cho 7
Vậy a;b;c đều chia hết cho 7