Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(P\left(x\right)=ax^2+bx+c\)
+) \(P\left(0\right)=a.0^2+b.0+c=c⋮7\)
+) \(P\left(1\right)=a.1^2+b.1+c=a+b+c\)
mà \(c⋮7\)
=> a+b\(⋮7\)(1)
+) \(P\left(2\right)=a.2^2+b.2+c=4a+2b+c=2\left(2a+b\right)+c\)
mà c chia hết cho 7
=>2(2a+b) chia hết cho 7
=> 2a+b chia hết cho 7 vì (2,7)=1
=> a+(a+b) chia hết cho 7
=> a chia hết cho 7 vì a+b chia hết cho7
=> b chia hết cho 7
vầy a,b,c chia hết cho 7
ta có f(x)=ax\(^2\)+bx+c
tại x=0 =>f(0)=c\(⋮\)7(1)
x=1=>f(1)=a+b+c\(⋮\)7
mà c\(⋮\)7=>a+b\(⋮\)7(2)
x=-1=>f(-1)=a-b+c
mà c\(⋮\)7=>a-b\(⋮\)7(3)
từ (2)(3)có a+b+a-b=2a\(⋮\)7
mà 2;7=(1)
=>a\(⋮\)7(4)
từ (4)(3)ta có a-b\(⋮\)7
a\(⋮\)7
=>b\(⋮\)7(5)
từ (1)(4)(5)suy ra a,b,c\(⋮\)7
Vì \(P_{\left(x\right)}=ax^3+bx^2+cx+d⋮5\) với \(\forall x\in Z\) nên ta có:
+) \(P_{\left(0\right)}⋮5\Rightarrow a.0^3+b.0^2+c.0+d⋮5\Rightarrow d⋮5\)
+) \(P_{\left(1\right)}⋮5\Rightarrow a.1^3+b.1^2+c.1+d⋮5\Rightarrow a+b+c+d⋮5\). Mà \(d⋮5\Rightarrow a+b+c⋮5\) (1)
+) \(P_{\left(-1\right)}⋮5\Rightarrow a.\left(-1\right)^3+b.\left(-1\right)^2+c.\left(-1\right)+d⋮5\)
\(\Rightarrow-a+b-c+d⋮5\Rightarrow-a+b-c⋮5\) (do \(d⋮5\)) (2)
+) Từ (1) và (2) \(\Rightarrow a+b+c-a+b-c⋮5\Rightarrow2b⋮5\Rightarrow b⋮5\)
+) Do \(a+b+c+d⋮5\) mà \(b,d⋮5\Rightarrow a+c⋮5\Rightarrow2a+2c⋮5\)
+) \(P_{\left(2\right)}⋮5\Rightarrow8a+4b+2c+d⋮5\Rightarrow8a+2c⋮5\Rightarrow8a+2c+2a+2c⋮5\)
\(\Rightarrow10a+4c⋮5\). Mà \(10a⋮5\Rightarrow4c⋮5\Rightarrow c⋮5\). Do \(a+c⋮5\Rightarrow a⋮5\)
Vậy \(a,b,c,d⋮5\)
Câu này y hệt hồi lớp 7 bọn tui thi nè
=====================
+ Xét x = 0 => P(0) = d \(⋮5\)
+ Xét x = 1 => \(P_{\left(1\right)}=\)\(\left(a+b+c+d\right)⋮5\Rightarrow a+b+c⋮5\) (1)
+ Xét x = -1 => P(-1) = \(\left[\left(-a\right)+b+\left(-c\right)+d\right]⋮5\Rightarrow\left[\left(-a\right)+b+\left(-c\right)\right]⋮5\)(2)
Ta có (1) + (2) = \(2b⋮5\) mà (2,5 ) = 1 => b chia hết cho 5
+ Xét P(2) = (8a + 4b+2c+d ) \(⋮5\) => (8a + 2c) \(⋮5\)
<=> 6a + 2a + 2c = 6a+2(a+c) chia hết cho 5
Mà a+b+c chia hết cho 5 ( do d chia hết cho 5 ) , b chia hết cho 5
=> a+c chia hết cho 5
=> 2(a+c) chia hết cho 5
=> 6a chia hết cho 5 mà (6,5)=1
=> a chia hết cho 5
Vì a+ c chia hết cho 5 , a chia hết cho 5 => c chia hết cho 5
Vậy .......
Câu thay từng giá trị của P(0) ; đến P(1) ; ...rồi trừ đi khi nào ra 2a chia hết cho 5 thì thôi
Vì \(P\left(x\right)=ax^2+bx+c\) với mọi x
=> Ta có:
Với x = 0 => \(P\left(0\right)=c⋮5\)
Với x = 1 => \(P\left(1\right)=a+b+c⋮5\Rightarrow a+b⋮5\)
Với x = -1 => \(P\left(-1\right)=a-b+c⋮5\Rightarrow a-b⋮5\)
=> ( a + b ) + ( a - b ) \(⋮\)5
=> 2a \(⋮\)5
=> a \(⋮\)5
=> b \(⋮\)5
Ta có: f(0) = c \(⋮\) 3
f(1) = a + b + c \(⋮\) 3 \(\Rightarrow\) a + b \(⋮\) 3 (1)
f(-1) = a - b + c \(⋮\) 3 \(\Rightarrow\) a - b \(⋮\) 3 (2)
Từ (1) và (2) suy ra a + b + a - b \(⋮\) 3 và a + b - a + b \(⋮\) 3
\(\Rightarrow\) \(\left\{{}\begin{matrix}2a⋮3\\2b⋮3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a⋮3\\b⋮3\end{matrix}\right.\)
Vậy a, b, c \(⋮\) 3
+ \(\left\{{}\begin{matrix}f\left(0\right)⋮3\\f\left(1\right)⋮3\\f\left(-1\right)⋮3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}c⋮3\\a+b+c⋮3\\a-b+c⋮3\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a+b⋮3\\a-b⋮3\\c⋮3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2a⋮3\\-2b⋮3\\c⋮3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a⋮3\\b⋮3\\c⋮3\end{matrix}\right.\)
\(P\left(0\right)=ax^2+bx+c=a.0+b.0+c=c\)
\(P\left(1\right)=ax^2+bx+c=a.1+b.1+c=a+b+c\)
\(P\left(2\right)=ax^2+bx+c=a.2^2+b.2+c=4a+2b+c\)
Do \(P\left(x\right)⋮3\forall x\in Z\) nên c;a+b+c;4a+2b+c đều chia hết cho 3
=>\(\left(a+b+c\right)-c=a+b⋮3\Rightarrow2\left(a+b\right)=2a+2b⋮3\);\(\left(4a+2b+c\right)-c=4a+2b⋮3\)
=>\(\left(4a+2b\right)-\left(2a+2b\right)=2a⋮3\) mà (2;3)=1 => a chia hết cho 3
a+b+c chia hết cho 3 mà a;c đều chia hết cho 3 => b cũng chia hết cho 3
=>....