Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d, D = 402 - 282 + 322 +80.32
D = (402 + 2.40.32 + 322) - 282
D = (40 + 32)2 - 282
D = (40 + 32 - 28)(40 + 32 + 28)
D = 44.100
D = 4400
e, E = 10.80,5 + 10.19,5 - 8.20,5 - 8. 79,5
E = 10.(80,5 + 19,5) - 8.( 20,5 + 79,5)
E = 10.100 - 8.100
E = 100.(10-8)
E = 200
F = 502 - 182 + 322 + 100.32
F = (502 - 182) + 32.( 32 + 100)
F = (50 -18)(50+18) + 32. 132
F = 32.68 + 32.132
F = 32.( 68 + 132)
F = 32. 200
F = 6400
a) \(\dfrac{10^{12}+5^{11}.2^9-5^{13}.2^8}{4.5^5.10^6}\)
\(=\dfrac{2^{12}.5^{12}+5^{11}.2^9-5^{13}.2^8}{2^2.5^5.2^6.5^6}\)
\(=\dfrac{2^{12}.5^{12}+5^{11}.2^9-5^{13}.2^8}{2^8.5^{11}}\)
\(=\dfrac{\left(2^8.5^{11}\right)\left(2^4.5+2-5^2\right)}{2^8.5^{11}}\)
\(=2^4.5+2-5^2\)
\(=57\)
b) \(\dfrac{\left[5\left(x-y\right)^4-3\left(x-y\right)^3+4\left(x-y\right)^2\right]}{\left(y-x\right)^2}\)
\(=\dfrac{\left(x-y\right)^2\left[5\left(x-y\right)^2-3\left(x-y\right)+4\right]}{\left(y-x\right)^2}\)
\(=\dfrac{\left(x^2+y^2-2xy\right)\left[5\left(x-y\right)^2-3\left(x-y\right)+4\right]}{\left(y^2+x^2-2xy\right)}\)
\(=5\left(x-y\right)^2-3\left(x-y\right)+4\)
c) \(\dfrac{\left(x+y\right)^5-2\left(x+y\right)^4+3\left(x+y\right)^3}{-5\left(x+y\right)^3}\)
\(=\dfrac{\left(x+y\right)^3\left[5\left(x+y\right)^2-2\left(x+y\right)+3\right]}{-5\left(x+y\right)^3}\)
\(=\dfrac{5\left(x+y\right)^2-2\left(x+y\right)+3}{-5}\)
Bài 3 :
\(D=40^2-28^2+32^2+80.32=40^2+2.40.32+32^2-28^2\)
\(=\left(40+32\right)^2-28^2=72^2-28^2=\left(72+28\right)\left(72-28\right)=46.100=4600\)
a, (4 - x )5 +(x - 2)5 =32
(=) 1024 - x5 + x5 - 32 = 32
(=) -x5 + x5 = 32 + 32 - 1024
(=) 0x = -960
=) phương trình vô nghiệm
3: Đặt x+3=a
Ta có: (x+3)(x+4)(x+5)=x
⇔a(a+1)(a+2)=a-3
⇔\(a^3+3a^2+2a-a+3=0\)
\(\Leftrightarrow a^3+3a^2+a+3=0\)
\(\Leftrightarrow a^2\left(a+3\right)+\left(a+3\right)=0\)
\(\Leftrightarrow\left(a+3\right)\left(a^2+1\right)=0\)(1)
Ta có: \(a^2\ge0\forall a\)
\(\Rightarrow a^2+1\ge1>0\forall a\)(2)
Từ (1) và (2) suy ra a+3=0
hay \(x+6=0\)
⇔x=-6
Vậy: x=-6
a) x3 + y3 - 3xy + 1
= ( x + y )3 - 3xy( x + y ) - 3xy + 1
= [ ( x + y )3 + 1 ] - [ 3xy( x + y ) + 3xy ]
= ( x + y + 1 )( x2 + 2xy + y2 - x - y + 1 ) - 3xy( x + y + 1 )
= ( x + y + 1 )( x2 - xy + y2 - x - y + 1 )
b) ( 4 - x )5 + ( x - 2 )5 - 32
= [ -( x - 4 ) ]5 + ( x - 2 )5 - 32
Đặt t = x - 3
đthức <=> ( 1 - t )5 + ( 1 + t )5 - 32 ( chỗ này bạn dùng nhị thức Newton để khai triển nhé )
= 10t4 + 20t2 - 30
Đặt y = t2
đthức = 10y2 + 20y - 30
= 10y2 - 10y + 30y - 30
= 10y( y - 1 ) + 30( y - 1 )
= 10( y - 1 )( y + 3 )
= 10( t2 - 1 )( t2 + 3 )
= 10( t - 1 )( t + 1 )( t2 + 3 )
= 10( x - 3 - 1 )( x - 3 + 1 )[ ( x - 3 )2 + 3 ]
= 10( x - 4 )( x - 2 )( x2 - 6x + 12 )
a,\(x^3+y^3-3xy+1\)
\(=\left(x^3+3x^2y+3xy^2+y^3\right)+1-3x^2y-3xy^2-3xy\)
\(=\left[\left(x+y\right)^3+1\right]-3xy\left(x+y+1\right)\)
\(=\left(x+y+1\right)\left[\left(x+y\right)^2-\left(x+y\right)+1\right]-3xy\left(x+y+1\right)\)
\(=\left(x+y+1\right)\left(x^2+2xy+y^2-x-y+1-3xy\right)\)
\(=\left(x+y+1\right)\left(x^2+y^2-xy-x-y+1\right)\)