Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1)\left(x+1\right)^3-\left(x-1\right)^3-6\left(x-1\right)\left(x-1\right)\\ =x^3+3x^2+3x+1-x^3+3x^2-3x+1-6\cdot\left(x-1\right)^2\\ =6x^2+2-6\cdot\left(x^2-2x+1\right)\\ =6x^2+2-6x^2+12x-6\\ =12x-4\)
\(2)x\left(x-1\right)\left(x+1\right)-\left(x+1\right)\left(x^2-x+1\right)\\ =x\left(x^2-1\right)-\left(x^3+1\right)\\ =x^3-x-x^3-1\\=-x-1\)
\(3)\left(x-1\right)^3-\left(x+2\right)\left(x^2-2x+4\right)+3\left(x-4\right)\left(x+4\right)\\ =x^3-3x^2+3x-1-(x^3+8)+3\cdot\left(x^2-16\right)\\ =x^3-3x^2+3x-1-x^3-8+3x^2-48\\ =3x-55\)
\(\frac{1-x}{1+x}+3=\frac{2x+3}{x+1}\left(ĐKXĐ:x\ne-1\right)\)
\(\Leftrightarrow\frac{1-x}{x+1}+\frac{3\left(x+1\right)}{x+1}=\frac{2x+3}{x+1}\)
\(\Leftrightarrow\frac{1-x+3\left(x+1\right)}{x+1}=\frac{2x+3}{x+1}\)
\(\Rightarrow1-x+3\left(x+1\right)=2x+3\)
\(\Leftrightarrow1-x+3x+3=2x+3\)
\(\Leftrightarrow2x+4=2x+3\)
\(\Leftrightarrow0x=-1\)(vô nghiệm)
Vậy phương trình vô nghiệm.
\(\frac{\left(x+2\right)^2}{2x-3}-1=\frac{x^2-10}{2x-3}\left(ĐKXĐ:x\ne\frac{3}{2}\right)\)
\(\Leftrightarrow\frac{x^2+4x+4}{2x-3}-\frac{2x-3}{2x-3}=\frac{x^2-10}{2x-3}\)
\(\Leftrightarrow\frac{x^2+4x+4-2x+3}{2x-3}=\frac{x^2-10}{2x-3}\)
\(\Rightarrow x^2+4x+4-2x+3=x^2-10\)
\(\Leftrightarrow2x+7=-10\)
\(\Leftrightarrow2x=-17\)
\(\Leftrightarrow x=\frac{-17}{2}\)(thỏa mãn ĐKXĐ)
Vậy phương trình có nghiệm duy nhất : \(x=\frac{-17}{2}\)
\(\dfrac{1}{x\left(x+1\right)}+\dfrac{1}{\left(x+1\right)\left(x+2\right)}+...+\dfrac{1}{\left(x+6\right)\left(x+7\right)}+\dfrac{1}{\left(x+7\right)\left(x+8\right)}\)
\(=\dfrac{1}{x}-\dfrac{1}{x+1}+\dfrac{1}{x+1}-\dfrac{1}{x+2}+...+\dfrac{1}{x+7}-\dfrac{1}{x+8}\)
\(=\dfrac{1}{x}-\dfrac{1}{x+8}=\dfrac{8}{x\left(x+8\right)}\)
Ta có: \(\frac{1}{n\left(n+1\right)}=\frac{n+1-n}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)
Lại Có: ĐKXĐ: x≠1,x≠2,x≠3,x≠4,x≠5,x≠6
\(\frac{1}{\left(x-1\right)\left(x-2\right)}+\frac{1}{\left(x-2\right)\left(x-3\right)}+\frac{1}{\left(x-3\right)\left(x-4\right)}+\frac{1}{\left(x-4\right)\left(x-5\right)}+\frac{1}{\left(x-5\right)\left(x-6\right)}=\frac{1}{10}\)<=>\(\frac{1}{\left(x-6\right)\left(x-5\right)}+\frac{1}{\left(x-5\right)\left(x-4\right)}+\frac{1}{\left(x-4\right)\left(x-3\right)}+\frac{1}{\left(x-3\right)\left(x-2\right)}+\frac{1}{\left(x-2\right)\left(x-1\right)}=\frac{1}{10}\)
<=>\(\frac{1}{x-6}-\frac{1}{x-5}+\frac{1}{x-5}-\frac{1}{x-4}+\frac{1}{x-4}-\frac{1}{x-3}+\frac{1}{x-3}-\frac{1}{x-2}+\frac{1}{x-2}-\frac{1}{x-1}=\frac{1}{10}\)
<=> \(\frac{1}{x-6}-\frac{1}{x-1}=\frac{1}{10}\)
<=> \(\frac{x-1-x+6}{\left(x-6\right)\left(x-1\right)}=\frac{1}{10}\)
<=> \(\frac{5}{\left(x-6\right)\left(x-1\right)}=\frac{1}{10}\)
<=>(x-6)(x-1)=50
<=>x2-7x+6-50=0
<=>x2+4x-11x-44=0
<=>x(x+4)-11(x+4)=0
<=>(x+4)(x-11)=0
<=>\(\left[{}\begin{matrix}x+4=0\\x-11=0\end{matrix}\right.\)
<=>\(\left[{}\begin{matrix}x=-4\\x=11\end{matrix}\right.\)(Thỏa mãn)
Vậy phương trình thuộc tập nghiệm S={-4;11}
a,
\(\left(x+1\right)\left(x^2-x+1\right)-\left(x-1\right)\left(x^2+x+1\right)\)
\(=x^3+1-x^3+1=2\)
b, \(x\left(x-4\right)\left(x+4\right)-\left(x^2+1\right)\left(x^2-1\right)\)
\(=x\left(x^2-16\right)-\left(x^4-1\right)\)
\(=x^3-16x-x^4+1\)
a) \(\left(x+1\right)\left(x^2-x+1\right)-\left(x-1\right)\left(x^2+x+1\right)\)
= \(x^3-x^2+x+x^2-x+1-\left(x^3+x^2+x-x^2-x-1\right)\)
= \(x^3-x^2+x+x^2-x+1-x^3-x^2-x+x^2+x+1\)
= \(2\)
b) \(x\left(x-4\right)\left(x+4\right)-\left(x^2+1\right)\left(x^2-1\right)\)
= \(x\left(x^2-16\right)-\left(x^4-1\right)\) = \(x^3-16x-x^4+1\)
= \(-x^4+x^3-16x+1\)
theo cách tính tổng (bn có thể xem lại ở toán 7 hay 6 j đấy) thì bt trên bằng 1/x - 1/(x+5)
từ đó tính tiếp nha bn
x + 1/x - 1 - x - 1/x + 1 = 4/(x - 1)(x + 1)
(x + 1)^2 - (x - 1)^2 = 4
4x = 4
x = 1 (loại)
=> không có x tmyk :))
\(\frac{x+1}{x-1}-\frac{x-1}{x+1}=\frac{4}{\left(x-1\right)\left(x+1\right)}\)
\(\Leftrightarrow\frac{\left(x+1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}=\frac{4}{\left(x-1\right)\left(x+1\right)}\)
\(\Leftrightarrow\left(x+1\right)^2-\left(x-1\right)^2=4\)
\(\Leftrightarrow2.2x=4\)
\(\Leftrightarrow x=1\)( loại )
Vậy tập nghiệm của PT là : \(S=\varnothing\)
Chúc bạn học tốt !!!