Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1 :
a, \(\frac{3\left(2x+1\right)}{4}-\frac{5x+3}{6}=\frac{2x-1}{3}-\frac{3-x}{4}\)
\(\Leftrightarrow\frac{6x+3}{4}+\frac{3-x}{4}=\frac{2x-1}{3}+\frac{5x+3}{6}\)
\(\Leftrightarrow\frac{5x+6}{4}=\frac{9x+1}{6}\Leftrightarrow\frac{30x+36}{24}=\frac{36x+4}{24}\)
Khử mẫu : \(30x+36=36x+4\Leftrightarrow-6x=-32\Leftrightarrow x=\frac{32}{6}=\frac{16}{3}\)
tương tự
\(\frac{19}{4}-\frac{2\left(3x-5\right)}{5}=\frac{3-2x}{10}-\frac{3x-1}{4}\)
\(< =>\frac{19.5}{20}-\frac{8\left(3x-5\right)}{20}=\frac{2\left(3-2x\right)}{20}-\frac{5\left(3x-1\right)}{20}\)
\(< =>95-24x+40=6-4x-15x+5\)
\(< =>-24x+135=-19x+11\)
\(< =>5x=135-11=124\)
\(< =>x=\frac{124}{5}\)
\(x-5=\frac{1}{3\left(x+2\right)}\left(đkxđ:x\ne-2\right)\)
\(< =>3\left(x-5\right)\left(x+2\right)=1\)
\(< =>3\left(x^2-3x-10\right)=1\)
\(< =>x^2-3x-10=\frac{1}{3}\)
\(< =>x^2-3x-\frac{31}{3}=0\)
giải pt bậc 2 dễ r
\(\frac{x}{3}+\frac{x}{4}=\frac{x}{5}-\frac{x}{6}\)
\(< =>\frac{4x+3x}{12}=\frac{6x-5x}{30}\)
\(< =>\frac{7x}{12}=\frac{x}{30}< =>12x=210x\)
\(< =>x\left(210-12\right)=0< =>x=0\)
\(1.\left(x-2\right)\left(x-1\right)=x\left(2x+1\right)+2\)
\(\Leftrightarrow x^2-3x+2=2x^2+x+2\)
\(\Leftrightarrow x^2-2x^2-3x-x=-2+2\)
\(\Leftrightarrow-x^2-4x=0\)
\(\Leftrightarrow x\left(-x-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\-x-4=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-4\end{cases}}\)Vậy S={-4;0}
\(2.\left(x+2\right)\left(x+2\right)-\left(x-2\right)\left(x-2\right)=8x\)
\(\Leftrightarrow\left(x+2\right)^2-\left(x-2\right)^2-8x=0\)
\(\Leftrightarrow x^2+4x+4-\left(x^2-4x+4\right)-8x=0\)
\(\Leftrightarrow x^2+4x+4-x^2+4x-4-8x=0\)
\(\Leftrightarrow0=0\)(luôn đúng vs mọi giá trị của x)
\(3.\left(2x-1\right)\left(x^3-x+1\right)=2x^3-3x^2+16=0\)
\(\Leftrightarrow2x^4-2x^2+2x-x^3+x-1=2x^3-3x^2+16=0\)
\(\Leftrightarrow2x^4-x^3-2x^2+3x-1=2x^3-3x^2+16=0\)
\(\Leftrightarrow2x^4-x^3-2x^3-2x^2+3x^2+3x-1-16=0\)
\(\Leftrightarrow2x^4-3x^3+x^2+3x-17=0\)
Cái này là phương trình bậc 4 lận, Giải hơi mất thời gian
\(\frac{x^2-x}{x+3}-\frac{x^2}{x-3}=\frac{7x^2-3x^2}{9-x^2}\) ĐKXĐ : \(x\ne\pm3\)
\(\Leftrightarrow\frac{\left(x^2-x\right)\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}-\frac{x^2\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}=\frac{3x^2-7x^2}{\left(x+3\right)\left(x-3\right)}\)
\(\Leftrightarrow x^3-3x^2-x^2+3x-x^3-3x^2=3x^2-7x^2\)
\(\Leftrightarrow\left(x^3-x^3\right)+\left(-3x^2-x^2-3x^2-3x^2+7x^2\right)-3x=0\)
\(\Leftrightarrow-3x^2-3x=0\)
\(\Leftrightarrow-3x\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}-3x=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}}\)
KL : nghiệm của PT là : \(S=\left\{0;-1\right\}\)
\(\frac{x-4}{x-1}+\frac{x+4}{x+1}=2\) DKXĐ : \(x\ne\pm1\)
\(\Leftrightarrow\frac{\left(x-4\right)\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}+\frac{\left(x+4\right)\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}=2\)
\(\Leftrightarrow x^2+x-4x-4+x^2-x+4x-4=2\)
\(\Leftrightarrow\left(x^2+x^2\right)\left(x-4x-x+4x\right)+\left(-4-4\right)=2\)
\(\Leftrightarrow2x^2-8=2\)
\(\Leftrightarrow2x^2=10\)
.....