Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x - 1)2 - (x + 2)(x - 5) + (4x - 1)2 = (-x - 1)(2 - 16x)
=> x2 - 2x + 1 - x2 + 5x - 2x + 10 + 16x2 - 8x + 1 = -2x + 16x2 -2 + 16x
=> 16x2 - 7x + 12 = 14x - 2 + 16x2
=> -21x = -14
=> 21x = 14
=> x = 2/3
\(\left(x-1\right)^2-\left(x+2\right)\left(x-5\right)+\left(4x-1\right)^2=\left(-x-1\right)\left(2-16x\right)\)
\(\Rightarrow x^2-2x+1-x^2+3x+10+16x^2-8x+1-16x^2-14x+2=0\)
\(\Rightarrow\left(x^2-x^2+16x^2-16x^2\right)+\left(-2x+3x-8x-14x\right)+\left(1+10+1+2\right)=0\)
\(\Rightarrow-21x+14=0\)
\(\Rightarrow-21x=-14\)
\(\Rightarrow x=\frac{2}{3}\)
a; \(P=x^3+1+x-\left(x^3-1\right)+2017\)
\(=x^3+1+x-x^3+1+2017\)
=x+2019=-2017+2019=2
b: \(Q=64x^3-80x-64x^3-1=-80x-1=-16-1=-17\)
a)\(P=\left(x+1\right)\left(x^2-x+1\right)+x-\left(x-1\right)\left(x^2+x+1\right)+2018\)
\(=\left(x^3+1\right)+x-\left(x^3-1\right)+2018=1+\left(x+2019\right)\)
Mà x=-2019 nên x+2019=0
\(\Rightarrow P=1\)
Vậy P=1 tại x=-2019
b)\(Q=16x\left(4x^2-5\right)-\left(4x+1\right)\left(16x^2-4x+1\right)\)
\(=64x^3-16.5x-\left(64x^3+1\right)=64x^3-64x^3-1-16.5x=-1-16.5x\)
Mà x=1/5 nên 5x=1 từ đó suy ra Q=-1-16=-17
Vậy Q=-17 tại x=1/5
\(P=\left(x+1\right)\left(x^2-x+1\right)+x-\left(x-1\right)\left(x^2+x+1\right)\)\(P=\left(x^3+1^3\right)+x-\left(x^3-1^3\right)\)
\(P=1^3+1^3-2017\)
\(P=-2015\)
Tương tự
bài 2
P= (x+1)(x2-x+1)+x-(x-1)(x2+x+1)+2010 với x = -2010
= (x3+1) + x - (x3-1) + 2010
= x3 + 1 + x - x3 + 1 + 2010
= x + 2 + 2010
= 2010 + 2 + 2010
=4022
Q=16x(4x2-5)-(4x+1)(16x2-4x + 1) với x = 1/5
= (4x)3-16.5x - [(4x)3+1]
= (4x)3 - 16.5x - (4x)3 - 1
= -16.5x - 1
= -16.5.1/5 - 1
= -16-1
=-17
a) (x-3)(x2+3x+9)-x(x-4)(x+4)=41
<=> x3 - 33 - x(x2 - 42) = 41
<=> x3 - 27 - x3 + 16x = 41
<=> 16x = 68
<=> x= 4,25
b) (x+2)(x2-2x+4)-x(x2+2)=4
<=> x3 + 23 - x3 - 2x =4
<=> 8 - 2x = 4
<=> 2x = 4
<=> x= 1/2
a) 16x^2 - (4x - 5)^2 = 15
<=> 16x^2 - 16x^2 + 40x - 25 = 15
<=> 40x = 40
<=> x = 1
b) (2x + 3)^2 - 4(x - 1)(x + 1) = 49
<=> 4x^2 + 12x + 9 - 4x^2 - 4x + 4x + 4 = 49
<=> 12x + 13 = 49
<=> 12x = 36
<=> x = 3
c) (2x + 1)(1 - 2x) + (1 - 2x)^2 = 18
<=> 1 - 4x^2 + 1 - 4x + 4x^2 = 18
<=> 2 - 4x = 18
<=> -4x = 16
<=> x = -4
d)2(x + 1)^2 - (x - 3)(x + 3) - (x - 4)^2 = 0
<=> 2x^2 + 4x + 2 - x^2 + 3^2 - x^2 + 8x - 16 = 0
<=> 12x - 5 = 0
<=> 12x = 5
<=> x = 5/12
e) (x - 5)^2 - x(x - 4) = 9
<=> x^2 - 10x + 25 - x^2 + 4x = 9
<=> -6x + 25 = 9
<=> -6x = 9 - 25
<=> -6x = -16
<=> x = -16/-6 = 8/3
f) (x - 5)^2 + (x - 4)(1 - x) = 0
<=> x^2 - 10x + 25 + x - x^2 - x - 4 + 4x = 0
<=> -5x + 21 = 0
<=> -5x = -21
<=> x = 21/5