Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(P=\dfrac{\left(x^2+2xy+9y^2\right)-\left(x+3y-2\sqrt{xy}\right)2\sqrt{xy}}{x+3y-2\sqrt{xy}}\)
\(=\dfrac{\left(x^2+6xy+9y^2\right)-\left(x+3y\right)2\sqrt{xy}}{x+3y-2\sqrt{xy}}\)
\(=\dfrac{\left(x+3y\right)^2-\left(x+3y\right)2\sqrt{xy}}{x+3y-2\sqrt{xy}}\)
\(=\dfrac{\left(x+3y\right)\left(x+3y-2\sqrt{xy}\right)}{x+3y-2\sqrt{xy}}\)
\(P=x+3y\)
b) \(\dfrac{P}{\sqrt{xy}+y}=\dfrac{x+3y}{\sqrt{xy}+y}=\dfrac{\left(x+3y\right):y}{\left(\sqrt{xy}+y\right):y}=\dfrac{\dfrac{x}{y}+3}{\sqrt{\dfrac{x}{y}}+1}\)
Đặt \(t=\sqrt{\dfrac{x}{y}}>0\) và \(\dfrac{P}{\sqrt{xy}+y}=Q\) thì \(Q=\dfrac{t^2+3}{t+1}=\dfrac{\left(t-1\right)^2+2\left(t+1\right)}{t+1}=2+\dfrac{\left(t-1\right)^2}{t+1}\ge2\)
\(Q_{min}=2\Leftrightarrow t=1\Leftrightarrow x=y\)
+Tìm điều kiện để hệ có nghiệm:
\(\left(x-y\right)^2\ge0\Rightarrow2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)
\(\Rightarrow2\left(m^2+2m-3\right)\ge\left(2m-1\right)^2\)
\(\Leftrightarrow-2m^2+8m-7\ge0\)
\(\Leftrightarrow\frac{4-\sqrt{2}}{2}\le m\le\frac{4+\sqrt{2}}{2}\)
+Tìm m để xy nhỏ nhất:
\(xy=\frac{\left(x+y\right)^2-\left(x^2+y^2\right)}{2}=\frac{\left(2m-1\right)^2-\left(m^2+2m-3\right)}{2}=\frac{3}{2}\left(m^2-2m\right)+2\)
\(=\frac{3}{2}\left(m-1\right)^2+\frac{1}{2}\)
Để xy nhỏ nhất thì \(\left(m-1\right)^2\)phải nhỏ nhất;
\(m\ge\frac{4-\sqrt{2}}{2}\approx1,29\)
\(\Rightarrow m-1\ge\frac{4-\sqrt{2}}{2}-1=1-\frac{\sqrt{2}}{2}>0\)
\(\Rightarrow\left(m-1\right)^2\ge\left(1-\frac{\sqrt{2}}{2}\right)^2\)
Dấu bằng xảy ra khi \(m=\frac{4-\sqrt{2}}{2}\)
Đây là giá trị m cần tìm
Bài 2. Áp dụng BĐT Cauchy dưới dạng Engel , ta có :
\(\dfrac{1}{x}+\dfrac{4}{y}+\dfrac{9}{z}\) ≥ \(\dfrac{\left(1+4+9\right)^2}{x+y+z}=196\)
⇒ \(P_{MIN}=196."="\) ⇔ \(x=y=z=\dfrac{1}{3}\)
Câu 1:
=>\(\dfrac{\sqrt{x}-1}{x-\sqrt{x}+1}-1< 0\)
=>\(\dfrac{\sqrt{x}-1-x+\sqrt{x}-1}{x-\sqrt{x}+1}< 0\)
=>\(-x+2\sqrt{x}-2< 0\)
=>\(x-2\sqrt{x}+2>0\)
=>(căn x-1)^2+1>0(luôn đúng)
Vậy: x>0
Câu 2:
a: \(\Leftrightarrow\left\{{}\begin{matrix}2x=2m+4\\x+y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\y=5-x=5-m-2=3-m\end{matrix}\right.\)
\(A=xy+x-1=\left(m+2\right)\left(3-m\right)+m+2-1\)
\(=3m-m^2+6-2m+m+1\)
\(=-m^2+2m+7\)
\(=-\left(m^2-2m-7\right)\)
\(=-\left(m^2-2m+1-8\right)\)
\(=-\left(m-1\right)^2+8< =8\)
Dấu = xảy ra khi m=1
b: Thay x=2/3 và y=0 vào (d), tađược:
2/3(2m-3)-3=0
=>4/3m-2-3=0
=>4/3m-5=0
=>m*4/3=5
=>m=5:4/3=5*3/4=15/4
\(S=\frac{\left(x+y\right)^2}{x^2+y^2}+\frac{\left(x+y\right)^2}{2xy}+\frac{\left(x+y\right)^2}{2xy}\)
\(S\ge\frac{4\left(x+y\right)^2}{x^2+y^2+2xy}+\frac{\left(x+y\right)^2}{\frac{\left(x+y\right)^2}{2}}=\frac{4\left(x+y\right)^2}{\left(x+y\right)^2}+2=6\)
\(\Rightarrow S_{min}=6\) khi \(x=y\)
Lời giải:
Áp dụng BĐT Cô-si:
\(x^2+9\geq 2\sqrt{9x^2}=6x\)
\(\Rightarrow S\geq 6x-x+3y+\frac{9}{x}+\frac{1}{y}=5x+3y+\frac{9}{x}+\frac{1}{y}(1)\)
Tiếp tục áp dụng BĐT Cô-si:
\(x+\frac{9}{x}\geq 2\sqrt{9}=6\)
\(y+\frac{1}{y}\geq 2\sqrt{1}=2\)
\(4x+2y=2(2x+y)\geq 14\)
Cộng theo vế: \(\Rightarrow 5x+3y+\frac{9}{x}+\frac{1}{y}\geq 22(2)\)
Từ \((1);(2)\Rightarrow S\geq 22\Leftrightarrow S_{\min}=22\)
Dấu bằng xảy ra khi $x=3,y=1$
a: Để C là số nguyên thì \(m^2-2m-m+2-5⋮m-2\)
\(\Leftrightarrow m-2\in\left\{1;-1;5;-5\right\}\)
hay \(m\in\left\{3;1;7;-3\right\}\)
c: Để E là số nguyên thì \(m+2⋮m^2-1\)
\(\Leftrightarrow m^2-1-3⋮m^2-1\)
\(\Leftrightarrow m^2-1\in\left\{1;-1;3;-3\right\}\)
hay \(m\in\left\{\sqrt{2};-\sqrt{2};0;2;-2\right\}\)
d: Để G là số nguyên thì \(3m+2⋮m^2-1\)
\(\Leftrightarrow9m^2-4⋮m^2-1\)
\(\Leftrightarrow m^2-1\in\left\{1;-1;5;-5\right\}\)
hay \(m\in\left\{\sqrt{2};-\sqrt{2};0;\sqrt{6};-\sqrt{6}\right\}\)