K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 1 2018

p^4-q^4 = (p^2-q^2).(p^2+q^2) = (p-q).(p+q).(p^2+q^2)

p,q là snt > 5 => p,q lẻ => p=2a+1 ; q=2b+1 ( a,b thuộc N sao )

=> p^4-q^4=(2a-2b)+(2a+2b+2).(4a^2+4b^2+4a+4b+2) = 16.(a-b).(a+b).(2a^2+2b^2+2a+2b+1) chia hêt cho 16 (1)

Lại có : p,q là snt > 5 =>p,q đều ko chia hết cho 3

=> p^2 và q^2 đều chia 3 dư 1

=> p^4 và q^4 đều chia 3 dư 1

=> p^4-q^4 chia hết cho 3 (2)

Mà p,q là snt > 5 => p,q đều ko chia hết cho 5

=> p^2;q^2 chia 5 dư 1 hoặc 4

=> p^4 và q^4 đều chia 5 dư 1

=> p^4-q^4 chia hết cho 5 (3)

Từ (1);(2) và (3) => p^4-q^4 chia hết cho 16.3.5=240 ( vì 16;3;5 là 3 số nguyên tố với nhau từng đôi một )

=> ĐPCM

Tk mk nha

12 tháng 1 2018

bai lop may

31 tháng 12 2015

.p4−q4=p4−q4−1+1=(p4−1)−(q4−1)
lại có 240=8.2.3.5
ta cần chứng minh (p4−1) ⋮ 240 và (q4−1) ⋮ 240
C/m: (p4−1) ⋮ 240:
(p4−1)=(p−1)(p+1)(p2+1)
vì p là số nguyến tố lớn hơn 5 nên p là số lẻ
⟹(p−1)(p+1) là tích của 2 số lẻ liên tiếp nên chia hết cho 8 (1)
Do p>5 nên:
p=3k+1→p−1=3kp−1 ⋮ 3
hoặc p=3k+2→p+1=3(k+1)→p+1 ⋮ 3 (2)
mặt khác vì p là số lẻ nên p2 là số lẻ →p2+1 là số chẵn nên p2+1 ⋮ 2 (3)
giờ cần chứng minh p4−1 ⋮ 5:
p có thể có dạng:
p=5k+1→p−1 ⋮ 5
p=5k+2→p2+1=25k2+20k+5→p2+1 ⋮ 5
p=5k+3→p2+1=25k2+30k+10→p2+1 ⋮ 5
p=5k+4→p+1=5k+5→p+1 ⋮ 5
p=5k mà p là số nguyến tố nên k=1→p=5 (ko thỏa mãn ĐK)
p4−1 ⋮ 5 (4)
từ (1),(2),(3),(4), suy ra p4−1 chia hết cho 2.3.5.8 hay p4−1 ⋮ 240
chứng minh tương tự, ta có: q4−1 ⋮ 240
Cái này đúng nhất

31 tháng 12 2015

bài này hùi lớp 6 toớ làm rùi nhưng quên mất

3 tháng 4 2015

ta có

p^4-q^4=(p^4-1)+(q^4-1)

xét hiệu:p^4-1=(p^2)^2-1^4

                    =(p^2-1)(p^2+1)=(p+1)(p-1)(p^2+1)              (*)

Ta thấy p+1 và p-1 là hai số chãn liên tiếp=>(p+1)(p-1)chia hết cho 8.Đặt (p+1)(p-1)=8n

Mặt khác p^2+1 là số chẵn.Dặt p^2+1=2k

thay vào (*) ta có p^4-1=2k8n=16knchia hết cho 16            (1)

mặt khác vì p là số nguyên tố lớn hơn 5=>p^4 chia cho 3 dư 1=>p^4-1 chia hết cho 3          (2)

mặt khascvif p là số nguyên tố lớn hơn 5 nên khi p chia cho 5 sẽ nhận được các số dư là 1,2,3,4

Với p=5m+1=>p-1 chia hết cho 5

Với p=5m+2=>p^4 chia cho 5 dư 1=>p^4-1 chia hết cho 5

Với p=5m+3=>p^4 chia cho 5 dư 1=>p^4-1 chia hết cho 5

Với p=5m+4=>p^4chia cho 5 dư 1=>p^4-1 chia hết cho 5

Tóm lại qua mỗi trường hợp thì p^4-1 đều chia hết cho 5              (3)

Từ (1),(2)và(3)=>p^4-1 chia hết cho 16.3.5=240

chứng minh tương tự với q^4-1=>q^4-1 chia hết cho 240

=>p^4-q^4 chia hết cho 240

7 tháng 1 2016

Mình chẳng gì ngoài T/H2:p^4-q^4=(p^4+1)-(q^4+1)

Còn cách chứng minh như trên

Mình chưa chắc đâu,lỡ sai đừng trách mình!

                                                                                                                               Buồn!hu...hu..!

14 tháng 6 2016

Bạn xem bài này nhé!

http://olm.vn/hoi-dap/question/60049.html

Rút được ra là:

p4-1 chia hết cho 240 với mọi số nguyên tố p>5

29 tháng 5 2016

Ta có: p4 – q4 = (p4 – 1 ) – (q4 – 1) ; 240 = 8 .2.3.5

Chứng minh p4 – 1   240

- Do p >5 nên p là số lẻ                                                                              

+ Mặt khác: p4 –1  = (p –1) (p + 1) (p2 +1)                                                 

--> (p-1 và (p+1) là hai số chẵn liên tiếp  => (p – 1) (p+1)  8                   

+ Do p là số lẻ nên p2  là số lẻ ->  p2 +1  2                                                 

- p > 5 nên p có dạng:

   + p = 3k +1 --> p – 1 = 3k + 1 – 1  = 3k   3  --> p4 – 1  3 

   + p = 3k + 2 -->  p + 1  = 3k + 2 + 1  = 3k +3  3  -->  p4 – 1  3             

- Mặt khác, p có thể là dạng:

+ P =  5k +1 --> p – 1  = 5k + 1 – 1  = 5k    5   --> p4 – 1    5

+ p = 5 k+ 2 --> p2 + 1 = (5k +2)2  +1  = 25k2  + 20k +5  5 --> p4 – 1  5  

+ p = 5k +3 --> p2 +1 = 25k2 + 30k +10 --> p4 –1  5

+ p = 5k +4 --> p + 1 = 5k +5  5 --> p4 – 1  5                                            

Vậy p4 – 1  8 . 2. 3 . 5 hay p4 – 1  240

Tương tự ta cũng có q4 – 1  240                                                                   

Vậy: (p4 – 1) – (q4 –1)  = p4 – q4    240

29 tháng 5 2016

Xét p,q có dạng 2k + 1 hoặc 5k + 1 (k là số tự nhiên)

Ta có: p4-q4-(p4-1)-(q4-1); 240 - 8.2.3.5. Ta cần chứng minh p4-1 chia hết cho 240

- Do p là số nto lớn hơn 5=> p là số lẻ

+ Mặt khác: p4-1-(p-1)(p+1)(p2+1)

=> (p-1) và (p+1) là hai số chẵn liên tiếp => (p-1)(p+1) chia hết cho 8

+ Do p là số lẻ nên p2 là số lẻ => p2+1 chia hết cho 2

p > 5 nên p có dạng

+ p-3k+1 => p-1-3k+1-1-3k chia hết cho 3 =>p4 - 1 chia hết cho 3

..............................

Tương tự ta cũng có q4 - 1 chia hết cho 240 .

Vậy (p4-1)-(q4-1) = p4 - q4 cho 240

~~Học tốt~~