Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 2 + 22 + 23 + ....+ 230
A = ( 2 +22 + 23 ) + ... + ( 228 + 229 + 230 )
A = 2 . ( 1 + 2 + 22 ) + .... + 228 . ( 1 + 2 + 22 )
A = 2 . 7 + ... 228 . 7
Vậy A chia hết cho 7
ta có
p^4-q^4=(p^4-1)+(q^4-1)
xét hiệu:p^4-1=(p^2)^2-1^4
=(p^2-1)(p^2+1)=(p+1)(p-1)(p^2+1) (*)
Ta thấy p+1 và p-1 là hai số chãn liên tiếp=>(p+1)(p-1)chia hết cho 8.Đặt (p+1)(p-1)=8n
Mặt khác p^2+1 là số chẵn.Dặt p^2+1=2k
thay vào (*) ta có p^4-1=2k8n=16knchia hết cho 16 (1)
mặt khác vì p là số nguyên tố lớn hơn 5=>p^4 chia cho 3 dư 1=>p^4-1 chia hết cho 3 (2)
mặt khascvif p là số nguyên tố lớn hơn 5 nên khi p chia cho 5 sẽ nhận được các số dư là 1,2,3,4
Với p=5m+1=>p-1 chia hết cho 5
Với p=5m+2=>p^4 chia cho 5 dư 1=>p^4-1 chia hết cho 5
Với p=5m+3=>p^4 chia cho 5 dư 1=>p^4-1 chia hết cho 5
Với p=5m+4=>p^4chia cho 5 dư 1=>p^4-1 chia hết cho 5
Tóm lại qua mỗi trường hợp thì p^4-1 đều chia hết cho 5 (3)
Từ (1),(2)và(3)=>p^4-1 chia hết cho 16.3.5=240
chứng minh tương tự với q^4-1=>q^4-1 chia hết cho 240
=>p^4-q^4 chia hết cho 240
Mình chẳng gì ngoài T/H2:p^4-q^4=(p^4+1)-(q^4+1)
Còn cách chứng minh như trên
Mình chưa chắc đâu,lỡ sai đừng trách mình!
Buồn!hu...hu..!
Bạn xem bài này nhé!
http://olm.vn/hoi-dap/question/60049.html
Rút được ra là:
p4-1 chia hết cho 240 với mọi số nguyên tố p>5