Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
p^4-q^4 = (p^2-q^2).(p^2+q^2) = (p-q).(p+q).(p^2+q^2)
p,q là snt > 5 => p,q lẻ => p=2a+1 ; q=2b+1 ( a,b thuộc N sao )
=> p^4-q^4=(2a-2b)+(2a+2b+2).(4a^2+4b^2+4a+4b+2) = 16.(a-b).(a+b).(2a^2+2b^2+2a+2b+1) chia hêt cho 16 (1)
Lại có : p,q là snt > 5 =>p,q đều ko chia hết cho 3
=> p^2 và q^2 đều chia 3 dư 1
=> p^4 và q^4 đều chia 3 dư 1
=> p^4-q^4 chia hết cho 3 (2)
Mà p,q là snt > 5 => p,q đều ko chia hết cho 5
=> p^2;q^2 chia 5 dư 1 hoặc 4
=> p^4 và q^4 đều chia 5 dư 1
=> p^4-q^4 chia hết cho 5 (3)
Từ (1);(2) và (3) => p^4-q^4 chia hết cho 16.3.5=240 ( vì 16;3;5 là 3 số nguyên tố với nhau từng đôi một )
=> ĐPCM
Tk mk nha
Có p2 - 1 = (p - 1)(p + 1)
Vì p là snt > 3 nên p có dạng 3k + 1 ; 3k + 2 ( k là stn)
*Nếu p = 3k + 1
=> p2 - 1 = (3k + 1 - 1)(3k + 1 + 1)
= 3k( 3k + 2 ) chia hết cho 3
*Nếu p = 3k + 2
=> p2 - 1 = (3k + 2 - 1)( 3k + 2 + 1)
=( 3k + 1) .(3k + 3)
= 3 ( k + 1 )( 3k + 1 ) chia hết cho 3
Vậy .........
b1
Các số tự nhiên chia hết cho 3 có số dư là n;n+1;n+2
Nếu \(n⋮3\Leftrightarrow n\left(n+1\right)\left(n+5\right)⋮3\)
Nếu \(n+1⋮3\Leftrightarrow n\left(n+1\right)\left(n+5\right)⋮3\)
Nếu \(n+2⋮3\Leftrightarrow n\left(n+1\right)\left(n+5\right)=n\left(n+1\right)\left(n+2+3\right)\)
Mà \(3⋮3\)\(\Rightarrow n+2+3⋮3\) \(\Rightarrow n\left(n+1\right)\left(n+2+3\right)⋮3\)
Hay \(n\left(n+1\right)\left(n+5\right)⋮3\)
Vậy \(n\left(n+1\right)\left(n+5\right)⋮3\forall n\in N\)
1)
+)Xét trường hợp p=2 =>p+6= 8 là hợp số (trái với giả thiết)
+) Xét trường hợp p=3 =>p+12=15 là hợp số (trái với giả thiết)
+)Xét trường hợp p>3 =>p có một trong hai dạng :3k+1 ; 3k+2
Nếu p= 3k+1 =>p+8=3k+8+1=3k+9 chia hết cho 3
=>p+8 là hợp số (trái với giả thiết )
Vậy p phải có dạng là 3k+2
Nếu p=3k+2 =>p+4 = 3k+2+4 = 3k+6 =3.(k+2)=>p+4 chia hết cho 3
=>p+4 là hợp số (đpcm)
Bài làm:
Ta có: Vì p,q là 2 số nguyên tố lớn hơn 3
=> p,q đều là 2 số lẻ
=> p + q chẵn với mọi số nguyên tố p,q
=> p + q chia hết cho 2
=> đpcm
Cho mk xin lỗi mk nhầm đề xíu p+q chia hết cho 12 chứ ko pk 2 ạ.