Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
9a2 + 4b2 = 13ab => (3a)2 + 2.3a.2b + (2b)2 = 25ab => (3a+2b)2 = 25ab => 3a + 2b = 5\(\sqrt{ab}\) (do 3a ; 2b > 0)
9a2 + 4b2 = 13ab => (3a)2 - 2.3a.2b + (2b)2 = ab => (3a- 2b)2 = ab => 3a - 2b = \(\sqrt{ab}\) (ví 3a > 2b > 0)
A = \(\frac{ab}{\left(3a-2b\right)\left(3a+2b\right)}=\frac{ab}{\sqrt{ab}.5\sqrt{ab}}=\frac{1}{5}\)
\(9a^2+b^2-6a+2b+5\)
\(=\left[\left(3a\right)^2-2.3.a+1\right]+\left(b^2+2b+1\right)+3\)
\(=\left(3a-1\right)^2+\left(b+1\right)^2+3\)
Ta thấy: \(\left(3a-1\right)^2\ge0;\left(b+1\right)^2\ge0\)\(\forall a;b\)
\(\Rightarrow\left(3a-1\right)^2+\left(b+1\right)^2+3>0\forall a;b\)
\(\Rightarrow9a^2+b^2-6a+2b+5>0\forall a;b\)
a: 3(x-1)-2(x+1)=-3
=>3x-3-2x-2=-3
=>x-5=-3
=>x=2
Thay x=2 vào pt(1), ta được:
\(2m^2+m-6=0\)
=>2m2+4m-3m-6=0
=>(m+2)(2m-3)=0
=>m=-2 hoặc m=3/2
c: \(x^2+x+1=x^2+x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)
2 ) đề sai rùi bạn ơi ! Mk giải theo đề đúng nka !!
CMR : nếu \(a+b>1\)thì \(a^2+b^2>\frac{1}{2}\)
Ta có : \(a+b>1>0\) ( 1 )
Bình phương hai vế ta được :
\(\left(a+b\right)^2>1\)\(\Leftrightarrow a^2+2ab+b^2>1\) ( 2 )
Mặt khác :
\(\left(a-b\right)^2\ge0\)\(\Leftrightarrow a^2-2ab+b^2\ge0\) ( 3 )
Cộng từng vế của (2) và (3) , ta được:
\(2a^2+2b^2>1\)\(\Leftrightarrow2\left(a^2+b^2\right)>1\)\(\Leftrightarrow a^2+b^2>\frac{1}{2}\left(dpcm\right)\)
tk cko mk nka vì công ngồi đánh máy tình !!!
Biết \(a>b\)và \(b>2\)\(\Leftrightarrow a>2\)
Ta có : \(a>2\)
\(\Leftrightarrow-3a< -6\)( Nhân 2 vế với -3 bất đẳng thức đổi chiều )
\(\Leftrightarrow-3a+6< 0\)(Cộng 2 vế với 6)
\(\Leftrightarrowđpcm\)
tk nka !1
3. abc > 0 nên trog 3 số phải có ít nhất 1 số dương.
Vì nếu giả sử cả 3 số đều âm => abc < 0 => trái giả thiết
Vậy nên phải có ít nhất 1 số dương
Không mất tính tổng quát, giả sử a > 0
mà abc > 0 => bc > 0
Nếu b < 0, c < 0:
=> b + c < 0
Từ gt: a + b + c < 0
=> b + c > - a
=> (b + c)^2 < -a(b + c) (vì b + c < 0)
<=> b^2 + 2bc + c^2 < -ab - ac
<=> ab + bc + ca < -b^2 - bc - c^2
<=> ab + bc + ca < - (b^2 + bc + c^2)
ta có:
b^2 + c^2 >= 0
mà bc > 0 => b^2 + bc + c^2 > 0
=> - (b^2 + bc + c^2) < 0
=> ab + bc + ca < 0 (vô lý)
trái gt: ab + bc + ca > 0
Vậy b > 0 và c >0
=> cả 3 số a, b, c > 0
1.a, Ta có: \(\left(a+b\right)^2\ge4a>0\)
\(\left(b+c\right)^2\ge4b>0\)
\(\left(a+c\right)^2\ge4c>0\)
\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64abc\)
Mà abc=1
\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8\left(đpcm\right)\)
a) \(a\left(a-6\right)+10=a^2-6a+10\)
\(=a^2-6a+9+1\)
\(=\left(a-3\right)^2+1\)
vì \(\left(a-3\right)^2\ge0\) với mọi a nên \(\left(a-3\right)^2+1>0\) hay \(a\left(a-6\right)+10>0\)
b) \(\left(x-3\right)\left(x-5\right)+4\)
\(=x^2-8x+15+4\)
\(=x^2-8x+16+3\)
\(=\left(x-4\right)^2+3\)
vì \(\left(x-4\right)^2\ge0\) với mọi x nên \(\left(x-4\right)^2+3>0\) hay \(\left(x-3\right)\left(x-5\right)+4>0\)
Quy đồng mẫu số và biến đổi ta được 9a^2-6a+1>=0
(3a-1)^2>=0 (đúng) =>bđt đúng