Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(9a^2-b^2=0\Rightarrow\left(3a-b\right)\left(3a+b\right)=0\Rightarrow\left\{{}\begin{matrix}3a-b=0\\3a+b=0\end{matrix}\right.\)
\(9a^3-\dfrac{1}{3}b^3=\dfrac{1}{3}\left(27a^3-b^3\right)=\dfrac{1}{3}\left(3a-b\right)\left(9a^2+3ab+b^2\right)=\dfrac{1}{3}.0.\left(9a^2+3ab+b^2\right)=0\)
Ngoài http://olm.vn/hoi-dap/question/779981.html còn cách khác
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\left(9a^3+3a^2+c\right)\left(\frac{1}{9a}+\frac{1}{3}+c\right)\ge\left(a+b+c\right)^2\)
\(\Rightarrow A\le\text{∑}\frac{a\left(\frac{1}{9a}+\frac{1}{3}+c\right)}{\left(a+b+c\right)^2}=\text{∑}\left(\frac{1}{9}+\frac{a}{3}+ac\right)\)
\(=\frac{1}{3}+\frac{a+b+c}{3}+\text{∑}ab\le\frac{1}{3}+\frac{1}{3}+\frac{\left(a+b+c\right)^2}{3}=1\)
Dấu "=" khi \(a=b=c=\frac{1}{3}\)
Áp dụng BĐT AM-GM ta có:
\(9a^3+\frac{1}{3}+\frac{1}{3}\ge3\sqrt[3]{9a^3\cdot\frac{1}{3}\cdot\frac{1}{3}}=3a\)
\(3b^2+\frac{1}{3}\ge2\sqrt{3b^2\cdot\frac{1}{3}}=2b\)
Do đó: \(A\le\text{∑}\frac{a}{3a+2b+c-1}=\frac{a}{2a+b}\left(a+b+c=1\right)\)
\(2A\le\text{∑}\frac{2a}{2a+b}=3-\text{∑}\frac{b}{2a+b}=3-\text{∑}\frac{b^2}{2ab+b^2}\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(2A\le3-\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}\)
\(=3-\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=2\Leftrightarrow A\le1\)
Dấu "=" khi \(a=b=c=\frac{1}{3}\)
Bài 1:
a^2-5ab-6b^2=0
=>a^2-6ab+ab-6b^2=0
=>a*(a-6b)+b(a-6b)=0
=>(a-6b)(a+b)=0
=>a=-b hoặc a=6b
TH1: a=-b
\(A=\dfrac{-2b-b}{-3b-b}+\dfrac{5b+b}{-3b+b}=\dfrac{-3}{-4}+\dfrac{6}{-2}=\dfrac{3}{4}-3=-\dfrac{9}{4}\)
TH2: a=6b
\(A=\dfrac{12b-b}{18b-b}+\dfrac{5b-6b}{18b+b}=\dfrac{11}{17}+\dfrac{-1}{19}=\dfrac{192}{323}\)
a^2 - 2ab - 3b^2 = 0
<=> a^2 - 3ab + ab - 3b^2 = 0
<=> a(a - 3b) + b(a - 3b) = 0
<=> (a - 3b)(a + b) = 0
=> a - 3b = 0 hoặc a + b = 0
=> a = 3b hoặc a = -b
+ Nếu a = 3b
A = (7a+2b)/(2a+b) + (9a-5b)/(2a-b)
A = (7.3b+2b)/(2.3b+b) + (9.3b-5b)/(2.3b-b)
A = 23b/7b + 22b/5b
A = 23/7 + 22/5 = 269/35
+ Nếu a = -b
A = (7a+2b)/(2a+b) + (9a-5b)/(2a-b)
A = (-7b+2b)/(-2b+b) + (-9b-5b)/(-2b-b)
A = -5b/-b + (-14b/-3b)
A = 5 + 14/3 = 29/3
a^2-2ab-3b^2=0
=>a^2-3ab+ab-3b^2=0
=>a(a-3b)+b(a-3b)=0
=>(a+b)(a-3b)=0
mà a,b khác 0 => a+b khác 0
=>a-3b=0
=>a=3b
Thay vào A ta được:
A=(7a+2b)/(2a+b)+(9a-5b)/(2a-b)
=(7.3b+2b)/(2.3b+b)+(9.3b-5b)/(2.3b-b)
=23b/7b+22b/5b=23/7+22/5=......
ta có:a-2ab-3b2=0
=>a2-3ab+ab-3b2=0
=>a(a-3b)+b(a-3b)=0
=>(a+b)(a-3b)=0
vìa,b khác 0=>a-3b=0
=>a=3b
thay vào A ta được:
A=(7.3b+2b)/(2.3b+b)+9=(9.3b-5b)/(2.3b-b)
=23b/7b+22b/5b
=23/7+22/5
=269/35
Vậy A=269/35
9a2 + 4b2 = 13ab => (3a)2 + 2.3a.2b + (2b)2 = 25ab => (3a+2b)2 = 25ab => 3a + 2b = 5\(\sqrt{ab}\) (do 3a ; 2b > 0)
9a2 + 4b2 = 13ab => (3a)2 - 2.3a.2b + (2b)2 = ab => (3a- 2b)2 = ab => 3a - 2b = \(\sqrt{ab}\) (ví 3a > 2b > 0)
A = \(\frac{ab}{\left(3a-2b\right)\left(3a+2b\right)}=\frac{ab}{\sqrt{ab}.5\sqrt{ab}}=\frac{1}{5}\)