K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2016

a^2 - 2ab - 3b^2 = 0

<=> a^2 - 3ab + ab - 3b^2 = 0

<=> a(a - 3b) + b(a - 3b) = 0

<=> (a - 3b)(a + b) = 0

=> a - 3b = 0 hoặc a + b = 0

=> a = 3b hoặc a = -b

+ Nếu a = 3b

A = (7a+2b)/(2a+b) + (9a-5b)/(2a-b)

A = (7.3b+2b)/(2.3b+b) + (9.3b-5b)/(2.3b-b)

A = 23b/7b + 22b/5b

A = 23/7 + 22/5 = 269/35

+ Nếu a = -b

A = (7a+2b)/(2a+b) + (9a-5b)/(2a-b)

A = (-7b+2b)/(-2b+b) + (-9b-5b)/(-2b-b)

A = -5b/-b + (-14b/-3b)

A = 5 + 14/3 = 29/3

22 tháng 12 2016

a^2-2ab-3b^2=0

=>a^2-3ab+ab-3b^2=0

=>a(a-3b)+b(a-3b)=0

=>(a+b)(a-3b)=0

mà a,b khác 0 => a+b khác 0

=>a-3b=0

=>a=3b

Thay vào A ta được:

A=(7a+2b)/(2a+b)+(9a-5b)/(2a-b)

=(7.3b+2b)/(2.3b+b)+(9.3b-5b)/(2.3b-b)

=23b/7b+22b/5b=23/7+22/5=......

14 tháng 1 2017

ta có:a-2ab-3b2=0

=>a2-3ab+ab-3b2=0

=>a(a-3b)+b(a-3b)=0

=>(a+b)(a-3b)=0

vìa,b khác 0=>a-3b=0

=>a=3b

thay vào A ta được:

A=(7.3b+2b)/(2.3b+b)+9=(9.3b-5b)/(2.3b-b)

  =23b/7b+22b/5b

  =23/7+22/5

  =269/35

Vậy A=269/35

30 tháng 6 2017

ĐK \(9a^2-b^2\ne0\)

Ta có B =\(\frac{2a-b}{3a-b}+\frac{5b-a}{3a+b}=\frac{\left(2a-b\right)\left(3a+b\right)+\left(5b-a\right)\left(3a-b\right)}{\left(3a+b\right)\left(3a-b\right)}\)

=\(\frac{6a^2+2ab-3ab-b^2+15ab-5b^2-3a^2+ab}{9a^2-b^2}\)

=\(\frac{3a^2+15ab-6b^2}{9a^2-b^2}=\frac{3\left(a^2+5ab-2b^2\right)}{9a^2-b^2}\)

Từ \(10a^2-3b^2+5ab=0\Rightarrow5ab=3b^2-10a^2\)

\(\Rightarrow B=\frac{3\left(a^2+3b^2-10a^2-2b^2\right)}{9a^2-b^2}=\frac{3\left(-9a^2+b^2\right)}{9a^2-b^2}=-3\)

Vậy B =-3

14 tháng 8 2018

x2(y+z)+y2(z+y)+z2(x+y)

28 tháng 11 2022

Bài 1:

a^2-5ab-6b^2=0

=>a^2-6ab+ab-6b^2=0

=>a*(a-6b)+b(a-6b)=0

=>(a-6b)(a+b)=0

=>a=-b hoặc a=6b

TH1: a=-b

\(A=\dfrac{-2b-b}{-3b-b}+\dfrac{5b+b}{-3b+b}=\dfrac{-3}{-4}+\dfrac{6}{-2}=\dfrac{3}{4}-3=-\dfrac{9}{4}\)

TH2: a=6b

\(A=\dfrac{12b-b}{18b-b}+\dfrac{5b-6b}{18b+b}=\dfrac{11}{17}+\dfrac{-1}{19}=\dfrac{192}{323}\)

9 tháng 1 2017

a^2-2ab-3b^2 như thế nào chứ thế làm sao giai dc

29 tháng 5 2018

a + b + 2a2 + 2b2\(2ab+2a\sqrt{b}+2b\sqrt{a}\)

⇔ a + b + 2a2 + 2b2 - \(2ab-2a\sqrt{b}-2b\sqrt{a}\) ≥ 0

⇔ a2 - 2ab + b2 + a2 - 2a\(\sqrt{b}+b+b^2-2b\sqrt{a}+a\) ≥ 0

⇔ ( a - b)2 + ( a - \(\sqrt{b}\) )2 + ( b - \(\sqrt{a}\))2 ≥ 0 ( Luôn đúng )

29 tháng 5 2018

Dấu \("="\) xảy ra khi ....................

6 tháng 10 2020

Ta có: \(10a^2-3b^2+ab=0\Leftrightarrow10a^2+6ab-5ab-3b^2=0\)\(\Leftrightarrow2a\left(5a+3b\right)-b\left(5a+3b\right)=0\Leftrightarrow\left(2a-b\right)\left(5a+3b\right)=0\Leftrightarrow\orbr{\begin{cases}2a-b=0\\5a+3b=0\end{cases}}\)

\(\Leftrightarrow2a=b\)hoặc \(5a=-3b\)( không thoả mãn do b>a>0)

Tthay b=2a vào M ta có: \(M=\frac{2a-2a}{3a-2a}+\frac{5.2a-a}{3a+2a}=\frac{0}{a}+\frac{9a}{5a}=0+\frac{9}{5}=\frac{9}{5}\)