Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : x3 + x2 + 2x - 16 \(\ge0\)
<=> \(x^3-2x^2+3x^2-6x+8x-16\ge0\)
<=> \(x^2\left(x-2\right)+3x\left(x-2\right)+8\left(x-2\right)\ge0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+3x+8\right)\ge0\)
Vì \(x^2+3x+8>0\forall x\)
Nên : \(x-2\ge0\)
\(\Leftrightarrow x\ge2\)
a) 2x2 - 4x + 5
= 2( x2 - 2x + 1 ) + 3
= 2( x - 1 )2 + 3 ≥ 3 > 0 ∀ x ( đpcm )
b) 3x2 + 2x + 1
= 3( x2 + 2/3x + 1/9 ) + 2/3
= 3( x + 1/3 )2 + 2/3 ≥ 2/3 > 0 ∀ x ( đpcm )
c) -x2 + 6x - 10
= -x2 + 6x - 9 - 1
= -( x2 - 6x + 9 ) - 1
= -( x - 3 )2 - 1 ≤ -1 < 0 ∀ x ( đpcm )
d) -x2 + 3x - 3
= -x2 + 3x - 9/4 - 3/4
= -( x2 - 3x + 9/4 ) - 3/4
= -( x - 3/2 )2 - 3/4 ≤ -3/4 < 0 ∀ x ( đpcm )
e) \(\frac{x^2+4x+5}{2}>0\)
Vì 2 > 0
=> x2 + 4x + 5 > 0
=> x2 + 4x + 4 + 1 > 0
=> ( x + 2 )2 + 1 > 0 ( đúng )
=> \(\frac{x^2+4x+5}{2}>0\)∀ x ( đpcm )
f) \(\frac{-6+2x-x^2}{x^2+1}< 0\)
Vì x2 + 1 ≥ 1 ∀ x
=> -6 + 2x - x2 < 0
=> -x2 + 2x - 1 - 5
= -( x2 - 2x + 1 ) - 5
= -( x - 1 )2 - 5 < 0 ( đúng )
=> \(\frac{-6+2x-x^2}{x^2+1}< 0\)∀ x ( đpcm )
a,Ta có :\(2x^2-4x+5=\left(x^2-2x+1\right)+\left(x^2-2x+1\right)+3\)
\(=\left(x-1\right)^2+\left(x-1\right)^2+3=2\left(x-1\right)^2+3\)
Do \(2\left(x-1\right)^2\ge0\Leftrightarrow2\left(x-1\right)^2+3\ge3\forall x\inℝ\)
Hay :\(2x^2-4x+5>0\)
Vậy nên BPT luôn đúng với mọi số thực x
b,Ta có : \(3x^2+2x+1=x^2+2x+1+2x^2\)
\(=\left(x+1\right)^2+2x^2\)
Do \(\hept{\begin{cases}\left(x+1\right)^2\ge0\forall x\inℝ\\2x^2\ge0\forall x\inℝ\end{cases}}\Leftrightarrow\left(x+1\right)^2+2x^2\ge0\forall x\inℝ\)
Vậy nên BPT luôn đúng với mọi số thực x
c,Ta có : \(-x^2+6x-10=-\left(x^2-6x+10\right)\)
\(=-\left(x^2-6x+9\right)-1=-\left(x-3\right)^2-1\)
Do \(\left(x-3\right)^2\ge0\forall x\inℝ\Leftrightarrow-\left(x-3\right)^2-1\le-1\forall x\inℝ\)
Hay \(-x^2+6x-10\le-1\forall x\inℝ\)
Vậy nên BPT luôn đúng với mọi số thực x
d, Ta có :\(-x^2+3x-3=-\left(x^2-3x+3\right)\)
\(=-\left(x^2-2.\frac{3}{2}.x+\frac{9}{4}\right)-\frac{3}{4}=-\left(x-\frac{3}{2}\right)^2-\frac{3}{4}\)
Do \(\left(x-\frac{3}{2}\right)^2\ge0\forall x\inℝ\Leftrightarrow-\left(x-\frac{3}{2}\right)^2-\frac{3}{4}\le-\frac{3}{4}\forall x\inℝ\)
Hay \(-x^2+3x-3\le0\forall x\inℝ\)
Vậy nên BPT luôn đúng với mọi số thực x
2 câu còn lại bạn nào làm giúp mình nha
a)\(2x+1>3\)
\(\Leftrightarrow2x>2\)
\(\Leftrightarrow x>1\)
\(\left|x\right|>1\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>1\\x< -1\end{matrix}\right.\)
=> Hai bất phương trình sau không tương đương
b. 3x – 9 < 0
\(\Leftrightarrow3x< 9\)
\(\Leftrightarrow x< 3\)
x2 < 9
\(\Leftrightarrow\left|x\right|< 3\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>-3\\x< 3\end{matrix}\right.\)
=> Hai bất phương trình sau không tương đương
a)2x+1>32x+1>3
⇔2x>2⇔2x>2
⇔x>1⇔x>1
|x|>1|x|>1
⇔{x>1x<−1⇔{x>1x<−1
=> Hai bất phương trình sau không tương đương
b. 3x – 9 < 0
⇔3x<9⇔3x<9
⇔x<3⇔x<3
x2 < 9
⇔|x|<3⇔|x|<3
⇔{x>−3x<3⇔{x>−3x<3
=> Hai bất phương trình sau không tương đương
1
a (9+x)=2 ta có (9+x)= 9+x khi 9+x >_0 hoặc >_ -9
(9+x)= -9-x khi 9+x <0 hoặc x <-9
1)pt 9+x=2 với x >_ -9
<=> x = 2-9
<=> x=-7 thỏa mãn điều kiện (TMDK)
2) pt -9-x=2 với x<-9
<=> -x=2+9
<=> -x=11
x= -11 TMDK
vậy pt có tập nghiệm S={-7;-9}
các cau con lai tu lam riêng nhung cau nhan với số âm thi phan điều kiện đổi chiều nha vd
nhu cau o trên mk lam 9+x>_0 hoặc x>_0
với số âm thi -2x>_0 hoặc x <_ 0 nha
1a
x^2-8x<0
<=> x(x-8)<0
th1: x<0 và x-8>0
x<0 và x>8
<=> 8<x<0 ( vô lý)
th2: x>0 và x-8<0
<=> x>0 và x<8
<=> 0<x<8( tm)
vậy........
a) \(x^2-8x< 0\)
\(\Leftrightarrow x\left(x-8\right)< 0\)
\(\Leftrightarrow\hept{\begin{cases}x>0\\x-8< 0\end{cases}}\) hoặc \(\hept{\begin{cases}x< 0\\x-8>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x>0\\x< 8\end{cases}}\) hoặc \(\hept{\begin{cases}x< 0\\x>8\end{cases}}\) (loại)
\(\Leftrightarrow0< x< 8\)
b) \(x^2< 6x-5\)
\(\Leftrightarrow x^2-6x+5< 0\)
\(\Leftrightarrow x^2-x-5x+5< 0\)
\(\Leftrightarrow x\left(x-1\right)-5\left(x-1\right)< 0\)
\(\Leftrightarrow\left(x-1\right)\left(x-5\right)< 0\)
\(\Leftrightarrow\hept{\begin{cases}x-1>0\\x-5< 0\end{cases}}\) hoặc \(\hept{\begin{cases}x-1< 0\\x-5>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x>1\\x< 5\end{cases}}\) hoặc \(\hept{\begin{cases}x< 1\\x>5\end{cases}}\) (loại)
\(\Leftrightarrow1< x< 5\)
c) \(\frac{x-3}{x-2}< 0\)
\(\Leftrightarrow\hept{\begin{cases}x-3>0\\x-2< 0\end{cases}}\) hoặc \(\hept{\begin{cases}x-3< 0\\x-2>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x>3\\x< 2\end{cases}}\) (loại) hoặc \(\hept{\begin{cases}x< 3\\x>2\end{cases}}\)
\(\Leftrightarrow2< x< 3\)
d) \(\frac{x+1}{x-3}>2\) (ĐK: \(x\ne3\) )
\(\Leftrightarrow\frac{x+1}{x-3}-2>0\)
\(\Leftrightarrow\frac{x+1-2\left(x-3\right)}{x-3}>0\)
\(\Leftrightarrow\frac{-x+7}{x-3}>0\)
\(\Leftrightarrow\hept{\begin{cases}-x+7>0\\x-3>0\end{cases}}\) hoặc \(\hept{\begin{cases}-x+7< 0\\x-3< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-x>-7\\x>3\end{cases}}\) hoặc \(\hept{\begin{cases}-x< -7\\x< 3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x< 7\\x>3\end{cases}}\) hoặc \(\hept{\begin{cases}x>7\\x< 3\end{cases}}\) (loại)
\(\Leftrightarrow3< x< 7\)
a) x( x - 1 ) < 0
1/ \(\hept{\begin{cases}x>0\\x-1< 0\end{cases}}\Rightarrow\hept{\begin{cases}x>0\\x< -1\end{cases}}\)( loại )
2/ \(\hept{\begin{cases}x< 0\\x-1>0\end{cases}\Rightarrow}\hept{\begin{cases}x< 0\\x>-1\end{cases}\Rightarrow}-1< x< 0\)
Vậy tập nghiệm của bất phương trình là -1 < x < 0
b) ( x - 2 )( x - 5 ) > 0
1/ \(\hept{\begin{cases}x-2>0\\x-5>0\end{cases}}\Rightarrow\hept{\begin{cases}x>2\\x>5\end{cases}}\Rightarrow x>5\)
2/ \(\hept{\begin{cases}x-2< 0\\x-5< 0\end{cases}}\Rightarrow\hept{\begin{cases}x< 2\\x< 5\end{cases}}\Rightarrow x< 2\)
Vậy tập nghiệm của bất phương trình là x > 5 hoặc x < 2
c) ( x + 5 )( 7 - 2x ) > 0
1/ \(\hept{\begin{cases}x+5>0\\7-2x>0\end{cases}}\Rightarrow\hept{\begin{cases}x>-5\\x< \frac{7}{2}\end{cases}\Rightarrow}-5< x< \frac{7}{2}\)
2/ \(\hept{\begin{cases}x+5< 0\\7-2x< 0\end{cases}}\Rightarrow\hept{\begin{cases}x< -5\\x>\frac{7}{2}\end{cases}}\)( loại )
Vậy tập nghiệm của bất phương trình là -5 < x < 7/2
d) ( 2x + 1 )( x - 3 ) < 0
1/ \(\hept{\begin{cases}2x+1>0\\x-3< 0\end{cases}}\Rightarrow\hept{\begin{cases}x>-\frac{1}{2}\\x< 3\end{cases}}\Rightarrow-\frac{1}{2}< x< 3\)
2/ \(\hept{\begin{cases}2x+1< 0\\x-3>0\end{cases}}\Rightarrow\hept{\begin{cases}x< -\frac{1}{2}\\x>3\end{cases}}\)( loại )
Vậy tập nghiệm của bất phương trình là -1/2 < x < 3
e) x2 - 6x < 0
<=> x( x - 6 ) < 0
1/ \(\hept{\begin{cases}x>0\\x-6< 0\end{cases}}\Rightarrow\hept{\begin{cases}x>0\\x< 6\end{cases}}\Rightarrow0< x< 6\)
2/ \(\hept{\begin{cases}x< 0\\x-6>0\end{cases}}\Rightarrow\hept{\begin{cases}x< 0\\x>6\end{cases}}\)( loại )
Vậy tập nghiệm của bất phương trình là 0 < x < 6
f) ( 2 - x )( x + 3 ) > 0
1/ \(\hept{\begin{cases}2-x>0\\x+3>0\end{cases}}\Rightarrow\hept{\begin{cases}x< 2\\x>-3\end{cases}}\Rightarrow-3< x< 2\)
2/ \(\hept{\begin{cases}2-x< 0\\x+3< 0\end{cases}}\Rightarrow\hept{\begin{cases}x>2\\x< -3\end{cases}}\)( loại )
Vậy tập nghiệm của bất phương trình là -3 < x < 2
Trong các phương trình sau, những bất phương trình nào tương đương với −2x−1<−9 ?
A. x2 -16<0 C.2x+3>11
B. x>4 D. x2 -16>0