Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải pt (1) :(x+3)(2x+1)=0
=>{x+3=0 / {2x+1=0
=> {x=-3 / {x=-1/2
Để hai pt tương đương thì pt (2) nhận giá trị x=-3 và x=-1/2 .
+)Thay x=-3 vào pt (2) :
(m-4)(-3)^2 - 2(2m+9)(-3) -4 =0
=> (m-4)9 + 6(2m+9) - 4 = 0
=> 9m - 36+ 12m + 54 - 4= 0
=> 21m + 14 = 0
=> 21m = -14
=> m= -2/3
Vậy ...
+) Thay x= -1/2 vào pt (2) :
(m-4)(-1/2)^2 - 2(2m+9)(-1/2) -4 =0
=>1/4(m-4) + 2m +9 - 4 = 0
=>1/4m -1 +2m +9 - 4 =0
=>9/4m +4 =0
=>9/4m = -4
=>m =-16/9
Vậy ...
a)\(2x+1>3\)
\(\Leftrightarrow2x>2\)
\(\Leftrightarrow x>1\)
\(\left|x\right|>1\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>1\\x< -1\end{matrix}\right.\)
=> Hai bất phương trình sau không tương đương
b. 3x – 9 < 0
\(\Leftrightarrow3x< 9\)
\(\Leftrightarrow x< 3\)
x2 < 9
\(\Leftrightarrow\left|x\right|< 3\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>-3\\x< 3\end{matrix}\right.\)
=> Hai bất phương trình sau không tương đương
a)2x+1>32x+1>3
⇔2x>2⇔2x>2
⇔x>1⇔x>1
|x|>1|x|>1
⇔{x>1x<−1⇔{x>1x<−1
=> Hai bất phương trình sau không tương đương
b. 3x – 9 < 0
⇔3x<9⇔3x<9
⇔x<3⇔x<3
x2 < 9
⇔|x|<3⇔|x|<3
⇔{x>−3x<3⇔{x>−3x<3
=> Hai bất phương trình sau không tương đương
a) Ta có: \(\hept{\begin{cases}mx^2-\left(m+1\right)x+1=0\\\left(x-1\right)\left(2x-1\right)=0\end{cases}}\Leftrightarrow\hept{\begin{cases}mx^2-\left(m+1\right)x+1=0\\2x^2-3x+1=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}m=2\\m+1=3\end{cases}}\Rightarrow m=2\)
b) Ta có: \(\hept{\begin{cases}\left(x-3\right)\left(ax+2\right)=0\\\left(2x+b\right)\left(x+1\right)=0\end{cases}}\Leftrightarrow\hept{\begin{cases}ax^2+\left(2-3a\right)x-6=0\\2x^2+\left(b+2\right)x+b=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a=2\\b=-6\end{cases}}\)