K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2023

\(AC^2=100+25=125\Rightarrow AC=5\sqrt[]{5}\left(cm\right)\)

\(AB^2=100+225=325\Rightarrow AB=5\sqrt[]{13}\left(cm\right)\)

\(BC^2=225+25=250\Rightarrow BC=5\sqrt[]{10}\left(cm\right)\)

10 tháng 9 2023

\(x^2=1^2+1^2\left(pythagore\right)\\ \Rightarrow x=\sqrt{2}\\ \sqrt{5}^2=1^2+y^2\left(pythagore\right)\\ \Rightarrow y=\sqrt{4}=2\)

10 tháng 9 2023

a) \(x^2=1^2+1^2=2\Rightarrow x=\sqrt[]{2}\)

b) \(\left(\sqrt[]{5}\right)^2=y^2+1^2\Rightarrow y^2=5-1=4\Rightarrow y=2\)

21 tháng 4 2017

Bài giải:

Theo hình vẽ, ta có: AB = 2cm, CD = 4cm

Trong tam giác vuông AED, áp dụng định lý Pitago ta được:

AD2 = AE2 + ED2

= 32 + 12 =10

Suy ra AD = 1010cm

Vậy AB = 2cm, CD = 4cm, AD = BC = 1010cm

26 tháng 10 2017

A B C H D

Áp dụng định lí Pitago :

\(AD^2 = AH^2 + DH^2\)

\(= 3^2 + 1^2\)

\(= 10\)

\(\Rightarrow AD=\sqrt{10}\)

Vậy \(AB = 2cm\);\(CD = 4cm\);\(AD=BC=\sqrt{10}\)

HQ
Hà Quang Minh
Giáo viên
10 tháng 9 2023

Vẽ và cắt theo yêu cầu của đề bài.

10 tháng 9 2023

\(BC^2=AB^2+AC^2\left(Pitago\right)\)

\(BC^2=16+9=25\)

\(\Rightarrow BC=5\left(m\right)\)

Vậy chiều dài cầu thang cần xây là 5m

HQ
Hà Quang Minh
Giáo viên
10 tháng 9 2023

Vì tam giác ABC là tam giác đều, \(AH \bot BC\) nên H là trung điểm của BC suy ra

\(HB = HC = \frac{{BC}}{2} = \frac{2}{2} = 1\)(cm)

Áp đụng định lí Pythagore trong tam giác AHC ta có:

\(\begin{array}{l}A{C^2} = A{H^2} + H{C^2} \Rightarrow A{H^2} = A{C^2} - H{C^2} = {2^2} - {1^2} = 3\\ \Rightarrow AH = \sqrt 3  \approx 1,73(cm)\end{array}\)

Vậy chiều cao của tam giác đều là 1,73cm.

HQ
Hà Quang Minh
Giáo viên
10 tháng 9 2023

- Có \(\frac{{A'B'}}{{AB}} = \frac{{A'C'}}{{AC}} = \frac{2}{3}\)

- Có \(\frac{{B'C'}}{{BC}} = \frac{2}{3}\)

- Tam giác A'B'C' có đồng dạng với tam giác ABC và đồng dạng với tỉ số \(\frac{2}{3}\)

QT
Quoc Tran Anh Le
Giáo viên
14 tháng 1 2024

- Đỉnh: S

- Cạnh bên: SE, SF, SG, SH

- Mặt bên: SEF, SFG, SGH. SEH

- Mặt đáy: EFGH

- Đường cao: SI

- Một trung đoạn: SK

HQ
Hà Quang Minh
Giáo viên
10 tháng 9 2023

Hình chóp tam giác đều S. ABC có:

- Đỉnh: S

- Cạnh bên: SA, SB, SC.

- Mặt đáy: tam giác ABC.

- Đường cao: SO.

- Trung đoạn: SH

QT
Quoc Tran Anh Le
Giáo viên
14 tháng 1 2024

a) Dùng Luyện tập 2 trang 117 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 trong công cụ Luyện tập 2 trang 117 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 để kiểm tra trung điểm AC và BD, ta thấy trung điểm AC và BD trùng nhau.

Luyện tập 2 trang 117 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

b) Lưu hình vẽ ở HĐ2 thành tệp hbh.png.

Vào Hồ sơ → Chọn Xuất bản → Chọn PNG image (.png).

Luyện tập 2 trang 117 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

Trên màn hình hiện lên cửa sổ như sau:

Luyện tập 2 trang 117 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

Ta đổi tên tệp thành hbh (như hình vẽ), sau đó chọn xuất bản.

Luyện tập 2 trang 117 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

c) Tương tự, ta vẽ một hình thoi ABCD có cạnh 4 cm theo các bước sau:

Bước 1. Vẽ đoạn thẳng AB và có độ dài 4 cm tương tự như Bước 1 của HĐ1.

Bước 2. Vẽ điểm C sao cho BC = 4 cm.

Chọn công cụ Luyện tập 2 trang 117 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 → Chọn Luyện tập 2 trang 117 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 → Nháy chuột vào điểm B, nhập bán kính bằng 4.

Chọn công cụ Luyện tập 2 trang 117 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 → Chọn Luyện tập 2 trang 117 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 → Chọn điểm C bất kỳ nằm trên đường tròn tâm B.

Chọn công cụ Luyện tập 2 trang 117 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 → Chọn Luyện tập 2 trang 117 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 → Nháy chuột vào điểm C, nhập bán kính bằng 4.

Chọn công cụ Luyện tập 2 trang 117 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 → Chọn Luyện tập 2 trang 117 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 → Lần lượt nháy chuột đường tròn tâm A và đường tròn C.

Chọn công cụ Luyện tập 2 trang 117 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 để nối B với C, C với D, D với A.

Luyện tập 2 trang 117 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

Bước 3. Ẩn đường tròn và thu được hình thoi ABCD.

Luyện tập 2 trang 117 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8