K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
25 tháng 3 2020
3. Câu hỏi của Nguyễn Huyền Như - Toán lớp 6 - Học toán với OnlineMath
1
1
E
0
5 tháng 4 2018
\(x-1=\left(x-1\right)^5\)
\(\left(x-1\right)-\left(x-1\right)^5=0\)
\(\left(x-1\right)\left[1-\left(x-1\right)^4\right]=0\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\1-\left(x-1\right)^4\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\\left(x-1\right)^4=1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=1\\x-1=1\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}\)
b) \(\frac{2}{x-1}+\frac{y-1}{3}=\frac{1}{6}\)
HN
1
14 tháng 7 2016
\(A=n^2+n+1=n\left(n+1\right)+1\)
- Nếu \(n\vdots5\Rightarrow n\left(n+1\right)\vdots5\Rightarrow A=n\left(n+1\right)+1\)không chia hết cho 5.
- Nếu \(n\equiv1\left(mod5\right)\Rightarrow n+1\equiv2\left(mod5\right)\Rightarrow n\left(n+1\right)\equiv2\left(mod5\right)\Rightarrow A=n\left(n+1\right)+1\equiv3\left(mod5\right)\)không chia hết cho 5.
- Nếu \(n\equiv2\left(mod5\right)\Rightarrow n+1\equiv3\left(mod5\right)\Rightarrow n\left(n+1\right)\equiv6\equiv1\left(mod5\right)\Rightarrow A=n\left(n+1\right)+1\equiv2\left(mod5\right)\)không chia hết cho 5.
- Nếu \(n\equiv3\left(mod5\right)\Rightarrow n+1\equiv4\left(mod5\right)\Rightarrow n\left(n+1\right)\equiv12\equiv2\left(mod5\right)\Rightarrow A=n\left(n+1\right)+1\equiv3\left(mod5\right)\)không chia hết cho 5.
- Nếu \(n\equiv4\left(mod5\right)\Rightarrow n+1\vdots5\Rightarrow n\left(n+1\right)\vdots5\Rightarrow A=n\left(n+1\right)+1\)không chia hết cho 5.
Vậy, trong mọi trường hợp thì A không chia hết cho 5 nên A không chia hết cho 20052017 (vì 2005 chia hết cho 5)