K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2020

3. Câu hỏi của Nguyễn Huyền Như - Toán lớp 6 - Học toán với OnlineMath

21 tháng 3 2020

Với \(x\inℕ\)

\(202x+122x+20122x=20446x\)

Tất nhiên là có: \(x=20446\) chẳng hạn \(\left(20446x=20446\cdot20446=20446^2\right)\)

Mình không biết đề bài trên có đúng hay không.

5 tháng 4 2018

\(x-1=\left(x-1\right)^5\)

\(\left(x-1\right)-\left(x-1\right)^5=0\)

\(\left(x-1\right)\left[1-\left(x-1\right)^4\right]=0\)

\(\Rightarrow\orbr{\begin{cases}x-1=0\\1-\left(x-1\right)^4\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\\left(x-1\right)^4=1\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=1\\x-1=1\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}\)

b) \(\frac{2}{x-1}+\frac{y-1}{3}=\frac{1}{6}\)

14 tháng 7 2016

\(A=n^2+n+1=n\left(n+1\right)+1\)

  • Nếu \(n\vdots5\Rightarrow n\left(n+1\right)\vdots5\Rightarrow A=n\left(n+1\right)+1\)không chia hết cho 5.
  • Nếu \(n\equiv1\left(mod5\right)\Rightarrow n+1\equiv2\left(mod5\right)\Rightarrow n\left(n+1\right)\equiv2\left(mod5\right)\Rightarrow A=n\left(n+1\right)+1\equiv3\left(mod5\right)\)không chia hết cho 5.
  • Nếu \(n\equiv2\left(mod5\right)\Rightarrow n+1\equiv3\left(mod5\right)\Rightarrow n\left(n+1\right)\equiv6\equiv1\left(mod5\right)\Rightarrow A=n\left(n+1\right)+1\equiv2\left(mod5\right)\)không chia hết cho 5.
  • Nếu \(n\equiv3\left(mod5\right)\Rightarrow n+1\equiv4\left(mod5\right)\Rightarrow n\left(n+1\right)\equiv12\equiv2\left(mod5\right)\Rightarrow A=n\left(n+1\right)+1\equiv3\left(mod5\right)\)không chia hết cho 5.
  • Nếu \(n\equiv4\left(mod5\right)\Rightarrow n+1\vdots5\Rightarrow n\left(n+1\right)\vdots5\Rightarrow A=n\left(n+1\right)+1\)không chia hết cho 5.

Vậy, trong mọi trường hợp thì A không chia hết cho 5 nên A không chia hết cho 20052017 (vì 2005 chia hết cho 5)